Mathematical modelling has been widely applied to membrane bioreactor (MBRs) processes. However, to date, very few studies have reported on the application of the anaerobic digestion model N.1 (ADM1) to anaerobic membrane processes. The aim of this study was to evaluate the applicability of the ADM1 to a submerged anaerobic MBR (SAMBR) treating simulated industrial wastewater composed of cheese whey and sucrose. This study demonstrated that the biological processes involved in SAMBRs can be modelled by using the ADM1. Moreover, the results showed that very few modifications of the parameters describing the ADM1 were required to reasonably fit the experimental data. In particular, adaptation to the specific conditions of the coefficients describing the wastewater characterisation and the reduction of the hydrolysis rate of particulate carbohydrate (khyd,ch) from 0.25 d-1 (as suggested by the ADM1 for high-rate mesophilic reactors) to 0.13 d-1 were required to fit the experimental data. Copyright © Taylor & Francis Group, LLC.

Modelling wastewater treatment in a submerged anaerobic membrane bioreactor

Casu, S.;Ferraris, M.;Spagni, A.
2015-01-01

Abstract

Mathematical modelling has been widely applied to membrane bioreactor (MBRs) processes. However, to date, very few studies have reported on the application of the anaerobic digestion model N.1 (ADM1) to anaerobic membrane processes. The aim of this study was to evaluate the applicability of the ADM1 to a submerged anaerobic MBR (SAMBR) treating simulated industrial wastewater composed of cheese whey and sucrose. This study demonstrated that the biological processes involved in SAMBRs can be modelled by using the ADM1. Moreover, the results showed that very few modifications of the parameters describing the ADM1 were required to reasonably fit the experimental data. In particular, adaptation to the specific conditions of the coefficients describing the wastewater characterisation and the reduction of the hydrolysis rate of particulate carbohydrate (khyd,ch) from 0.25 d-1 (as suggested by the ADM1 for high-rate mesophilic reactors) to 0.13 d-1 were required to fit the experimental data. Copyright © Taylor & Francis Group, LLC.
2015
Anaerobic wastewater treatment;Modelling;Biogas;Membrane bioreactor;Cheese whey
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/2684
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact