In this work, we present a linear stability analysis of fully-ionized rotating plasma disks with a temperature gradient and a sub-thermal background magnetic field (oriented towards the axial direction). We describe how the plasma reacts when galvanometric and thermo-magnetic phenomena, such as Hall and Nernst-Ettingshausen effects, are taken into account, and meridian perturbations of the plasma are considered. It is shown how, in the ideal case, this leads to a significant overlap of the Magneto-rotational Instability and the Thermo-magnetic one. Considering dissipative effects, an overall damping of the unstable modes, although not sufficient to fully suppress the instability, appears especially in the thermo-magnetic related branch of the curve.
Thermo-galvanometric instabilities in magnetized plasma disks
Montani, G.
2014-01-01
Abstract
In this work, we present a linear stability analysis of fully-ionized rotating plasma disks with a temperature gradient and a sub-thermal background magnetic field (oriented towards the axial direction). We describe how the plasma reacts when galvanometric and thermo-magnetic phenomena, such as Hall and Nernst-Ettingshausen effects, are taken into account, and meridian perturbations of the plasma are considered. It is shown how, in the ideal case, this leads to a significant overlap of the Magneto-rotational Instability and the Thermo-magnetic one. Considering dissipative effects, an overall damping of the unstable modes, although not sufficient to fully suppress the instability, appears especially in the thermo-magnetic related branch of the curve.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.