In this work, we report the application of a sol–gel derived ZnO thin film as a buffer layer for high efficiency inverted polymer solar cells. ZnO films are widely used in such devices because they have a relatively high electron mobility, high transparency and environmental stability. The ZnO precursor was prepared by dissolving zinc acetate and ethanolamine in the 2-methoxyethanol. ZnO thin films were then deposited on indium tin oxide (ITO)/glass substrates by spin coating the above solution. Inverted polymer solar cells with the configuration ITO/ZnO/photoactive layer/MoOx/Ag were realized in order to investigate the performance of ZnO thin film. The photoactive layer is a blend of poly[(4,8-bis-(2-ethylhexyloxy)-benzo[1,2-b;4,5-b′]dithiophene)-2,6-diyl-alt-(4-(2-ethylhexanoyl)-thieno[3,4-b]thiophene)-2,6-diyl] (PBDTTT-C) and [6,6]-phenyl C71 butyric acid methyl ester ([70]PCBM) (1:1.5 w/w). We made a comparative study of the photovoltaic behavior of devices with ZnO films deposited using different sol–gel recipes. In particular, we varied the zinc acetate/ethanolamine molar ratio to have ZnO films with different trace amounts of starting materials. In addition we also prepared ZnO films annealed at 200 °C for different times (from 5′ to 60′) in order to evaluate this effect on the trace amount removal. © 2014, Springer Science+Business Media New York.

High efficiency inverted polymer solar cells with solution-processed ZnO buffer layer

Minarini, C.;Bobeico, E.;Ricciardi, R.;Diana, R.;Morvillo, P.
2015-01-01

Abstract

In this work, we report the application of a sol–gel derived ZnO thin film as a buffer layer for high efficiency inverted polymer solar cells. ZnO films are widely used in such devices because they have a relatively high electron mobility, high transparency and environmental stability. The ZnO precursor was prepared by dissolving zinc acetate and ethanolamine in the 2-methoxyethanol. ZnO thin films were then deposited on indium tin oxide (ITO)/glass substrates by spin coating the above solution. Inverted polymer solar cells with the configuration ITO/ZnO/photoactive layer/MoOx/Ag were realized in order to investigate the performance of ZnO thin film. The photoactive layer is a blend of poly[(4,8-bis-(2-ethylhexyloxy)-benzo[1,2-b;4,5-b′]dithiophene)-2,6-diyl-alt-(4-(2-ethylhexanoyl)-thieno[3,4-b]thiophene)-2,6-diyl] (PBDTTT-C) and [6,6]-phenyl C71 butyric acid methyl ester ([70]PCBM) (1:1.5 w/w). We made a comparative study of the photovoltaic behavior of devices with ZnO films deposited using different sol–gel recipes. In particular, we varied the zinc acetate/ethanolamine molar ratio to have ZnO films with different trace amounts of starting materials. In addition we also prepared ZnO films annealed at 200 °C for different times (from 5′ to 60′) in order to evaluate this effect on the trace amount removal. © 2014, Springer Science+Business Media New York.
2015
Sol–gel;Polymer solar cells;Inverted architecture;Photovoltaic;ZnO
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/2774
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact