Being aware of the needs for clean highly efficient micro combined heat and power (μCHP) systems for single and multifamily households, the Italian Ministry of Industry launched in 2009 the EFESO Project aiming to develop and operate four SOFC prototypes. An imperative part of the project foresaw computational modeling to optimize operating conditions of the power modules and pinpoint potential drawbacks in its design. This article deals with a 3-dimensional thermochemical model of a single SOFC tubular geometry cell comprised in a 1kWel stack operating under similar conditions to the characterized power module. An analysis is presented on the effects of current density distribution, temperature distribution in the cell and pressure drop in the air and fuel channels, being these the most critical variables when operating the SOFC-powered μCHP system. This model will serve as a platform to generate a model of the whole stack which will be further validated by means of experimental activities. © 2014 Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Thermochemical model and experimental validation of a tubular SOFC cell comprised in a 1 kWel stack designed for μcHP applications

McPhail
2014-01-01

Abstract

Being aware of the needs for clean highly efficient micro combined heat and power (μCHP) systems for single and multifamily households, the Italian Ministry of Industry launched in 2009 the EFESO Project aiming to develop and operate four SOFC prototypes. An imperative part of the project foresaw computational modeling to optimize operating conditions of the power modules and pinpoint potential drawbacks in its design. This article deals with a 3-dimensional thermochemical model of a single SOFC tubular geometry cell comprised in a 1kWel stack operating under similar conditions to the characterized power module. An analysis is presented on the effects of current density distribution, temperature distribution in the cell and pressure drop in the air and fuel channels, being these the most critical variables when operating the SOFC-powered μCHP system. This model will serve as a platform to generate a model of the whole stack which will be further validated by means of experimental activities. © 2014 Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
2014
Stack;SOFC;μCHP;CFD
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/2800
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact