The European roadmap toward the development of generation IV concepts addresses the safety and reliability assessment of the special system designed for decay heat removal of a gas-cooled fast reactor demonstrator (GFRD). The envisaged system includes the combination of both active and passive means to accomplish the fundamental safety function. Failure probabilities are calculated on various system configurations, according to either pressurized or depressurized accident events under investigation, and integrated with probabilities of occurrence of corresponding hardware components and natural circulation performance assessment. The analysis suggests the improvement of measures against common cause failures (CCF), in terms of an appropriate diversification among the redundant systems, to reduce the system failure risk. Particular emphasis is placed upon passive system reliability assessment, being recognized to be still an open issue, and the approach based on the functional reliability is adopted to address the point. Results highlight natural circulation as a challenging factor for the decay heat removal safety function accomplishment by means of passive devices. With the models presented here, the simplifying assumptions and the limited scenarios considered according to the level of definition of the design, where many systems are not yet established, one can conclude that attention has to be paid to the functional aspects of the passive system, i.e. the ones not pertaining to the "hardware" of the system. In this article the results of the analysis are discussed, where the effects of the analytical assumptions, design options, accident managements on the reliability are examined. The design diversity of the components undergoing CCFs can be effective for the improvement and some accident management measures are also possible by making use of the long grace period in GFRD.

Reliability study of a special decay heat removal system of a gas-cooled fast reactor demonstrator

Burgazzi, Luciano
2014

Abstract

The European roadmap toward the development of generation IV concepts addresses the safety and reliability assessment of the special system designed for decay heat removal of a gas-cooled fast reactor demonstrator (GFRD). The envisaged system includes the combination of both active and passive means to accomplish the fundamental safety function. Failure probabilities are calculated on various system configurations, according to either pressurized or depressurized accident events under investigation, and integrated with probabilities of occurrence of corresponding hardware components and natural circulation performance assessment. The analysis suggests the improvement of measures against common cause failures (CCF), in terms of an appropriate diversification among the redundant systems, to reduce the system failure risk. Particular emphasis is placed upon passive system reliability assessment, being recognized to be still an open issue, and the approach based on the functional reliability is adopted to address the point. Results highlight natural circulation as a challenging factor for the decay heat removal safety function accomplishment by means of passive devices. With the models presented here, the simplifying assumptions and the limited scenarios considered according to the level of definition of the design, where many systems are not yet established, one can conclude that attention has to be paid to the functional aspects of the passive system, i.e. the ones not pertaining to the "hardware" of the system. In this article the results of the analysis are discussed, where the effects of the analytical assumptions, design options, accident managements on the reliability are examined. The design diversity of the components undergoing CCFs can be effective for the improvement and some accident management measures are also possible by making use of the long grace period in GFRD.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12079/2879
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact