Objectives In this work long term stability of a zirconia toughened alumina (ZTA) composite was investigated. Methods Accelerated aging tests under hydrothermal environment, in autoclave and hot water, at different temperature, was conducted on material sample. Tetragonal to monoclinic transformation was evaluated by XRD analysis and the monoclinic content was plot as a function of the exposure time. The kinetic of transformation was studied by means Mehl-Avrami-Johnson (MAJ) nucleation and growth model. Results An activation energy for tetragonal to monoclinic transformation of 99 kJ/mol was found by the Arrhenius plot of reaction rate, value in agreement with other bibliography works regarding Y-TZP and alumina-zirconia composites. The in vivo hydrothermal stability simulation, estimated by the obtained activation energy, predicts in 65 years the time necessary to reach 25 vol% of monoclinic phase. Significance These results support the material suitability in biomedical field, especially in dentistry applications as implantology. © 2013 Academy of Dental Materials.

Lifetime estimation of a zirconia-alumina composite for biomedical applications

Mingazzini, C.;Mazzanti, F.;Magnani, G.;Burresi, E.;Fabbri, P.
2014

Abstract

Objectives In this work long term stability of a zirconia toughened alumina (ZTA) composite was investigated. Methods Accelerated aging tests under hydrothermal environment, in autoclave and hot water, at different temperature, was conducted on material sample. Tetragonal to monoclinic transformation was evaluated by XRD analysis and the monoclinic content was plot as a function of the exposure time. The kinetic of transformation was studied by means Mehl-Avrami-Johnson (MAJ) nucleation and growth model. Results An activation energy for tetragonal to monoclinic transformation of 99 kJ/mol was found by the Arrhenius plot of reaction rate, value in agreement with other bibliography works regarding Y-TZP and alumina-zirconia composites. The in vivo hydrothermal stability simulation, estimated by the obtained activation energy, predicts in 65 years the time necessary to reach 25 vol% of monoclinic phase. Significance These results support the material suitability in biomedical field, especially in dentistry applications as implantology. © 2013 Academy of Dental Materials.
Lifetime prediction;Low temperature degradation - aging;ZTA - zirconia-alumina composite;Tetragonal to monoclinic transformation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/2893
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact