This paper describes the preparation and characterization of a high-voltage lithium-ion battery based on Sn-decorated reduced graphene oxide and LiNi0.5Mn1.5O4 as the anode and cathode active materials, respectively. The Sn-decorated reduced graphene oxide is prepared using a microwave-assisted hydrothermal synthesis method followed by reduction at high temperature of a mixture of (C6H5)2SnCl2 and graphene oxide. The so-obtained anode material is characterized by thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, and electron diffraction spectroscopy. The LiNi0.5Mn1.5O4 is a commercially available product. The two materials are used to prepare composite electrodes, and their electrochemical properties are investigated by galvanostatic charge/discharge cycles at various current densities in lithium cells. The electrodes are then used to assemble a high-voltage lithium-ion cell, and the cell is tested to evaluate its performance as a function of discharge rate and cycle number. © 2015, Springer-Verlag Berlin Heidelberg.

A high-voltage lithium-ion battery prepared using a Sn-decorated reduced graphene oxide anode and a LiNi0.5Mn1.5O4 cathode

Carewska, M.;Prosini, P.P.
2016-01-01

Abstract

This paper describes the preparation and characterization of a high-voltage lithium-ion battery based on Sn-decorated reduced graphene oxide and LiNi0.5Mn1.5O4 as the anode and cathode active materials, respectively. The Sn-decorated reduced graphene oxide is prepared using a microwave-assisted hydrothermal synthesis method followed by reduction at high temperature of a mixture of (C6H5)2SnCl2 and graphene oxide. The so-obtained anode material is characterized by thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, and electron diffraction spectroscopy. The LiNi0.5Mn1.5O4 is a commercially available product. The two materials are used to prepare composite electrodes, and their electrochemical properties are investigated by galvanostatic charge/discharge cycles at various current densities in lithium cells. The electrodes are then used to assemble a high-voltage lithium-ion cell, and the cell is tested to evaluate its performance as a function of discharge rate and cycle number. © 2015, Springer-Verlag Berlin Heidelberg.
2016
Tin;Reduced graphene oxide;LiNi0.5Mn1.5O4;Lithium battery;Composite electrodes
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/2957
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact