Non-alcoholic fatty liver disease (NAFLD) is currently considered the main cause of chronic liver disease worldwide. Mechanisms leading to the development and progression of this disease are topics of great interest for researchers and clinicians. The current multi-hit hypothesis has thrown the crosstalk between liver and adipose tissue into sharp focus. It is well known that adipose tissue produces circulating factors, known as adipocytokines, which exert several effects on liver cells, promoting the onset of NAFLD and its progression to non-alcoholic steatohepatitis in obese subjects. In a similar way, hepatocytes may also respond to obesogenic stimuli by producing and releasing hepatokines into the circulation. Here, the authors provide an overview of recent advances in our understanding of the role of the most relevant adipocytokines and hepatokines in NAFLD pathogenesis, highlighting their possible molecular and functional interactions. © 2015 Taylor & Francis.
Recent advances in understanding the role of adipocytokines during non-alcoholic fatty liver disease pathogenesis and their link with hepatokines
Stronati, L.
2016-01-01
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently considered the main cause of chronic liver disease worldwide. Mechanisms leading to the development and progression of this disease are topics of great interest for researchers and clinicians. The current multi-hit hypothesis has thrown the crosstalk between liver and adipose tissue into sharp focus. It is well known that adipose tissue produces circulating factors, known as adipocytokines, which exert several effects on liver cells, promoting the onset of NAFLD and its progression to non-alcoholic steatohepatitis in obese subjects. In a similar way, hepatocytes may also respond to obesogenic stimuli by producing and releasing hepatokines into the circulation. Here, the authors provide an overview of recent advances in our understanding of the role of the most relevant adipocytokines and hepatokines in NAFLD pathogenesis, highlighting their possible molecular and functional interactions. © 2015 Taylor & Francis.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.