Near-real-time quality control procedures for temperature profiles collected from ships of opportunity were implemented during the 1980s in oceans across the world and from the 1990s in the Mediterranean. In this sea, the procedures were originally based on seven steps (detection of end of profile, gross range check, position control, elimination of spikes, Gaussian smoothing and resampling at 1-m intervals, general malfunction control, and comparison with climatology), complemented with initial and final visual checks. The quality of data derived from a comparison with historical data (namely, climatology) depends on the availability of a huge amount of data that can statistically represent the mean characteristics of the seawater. A significant amount of data has been collected, and the existing temperature database in the Mediterranean can now provide more information on temporal and spatial variability at monthly and mesoscales, and an improved procedure for data quality control has now been adopted. New "best" estimates of monthly temperature profiles are calculated by using a maximum likelihood method. It has been found that more than one "best estimate" temperature can be defined in particular areas and depths, as a consequence of climate variability. Additional near-real-time control procedures have been included in order to provide information on long-term variability associated with data. This information is included in metafiles to be used for reanalysis and studies on long-term variability and changes. © 2013 American Meteorological Society.

Implementation of real-time quality control procedures by means of a probabilistic estimate of seawater temperature and its temporal evolution

2013-01-01

Abstract

Near-real-time quality control procedures for temperature profiles collected from ships of opportunity were implemented during the 1980s in oceans across the world and from the 1990s in the Mediterranean. In this sea, the procedures were originally based on seven steps (detection of end of profile, gross range check, position control, elimination of spikes, Gaussian smoothing and resampling at 1-m intervals, general malfunction control, and comparison with climatology), complemented with initial and final visual checks. The quality of data derived from a comparison with historical data (namely, climatology) depends on the availability of a huge amount of data that can statistically represent the mean characteristics of the seawater. A significant amount of data has been collected, and the existing temperature database in the Mediterranean can now provide more information on temporal and spatial variability at monthly and mesoscales, and an improved procedure for data quality control has now been adopted. New "best" estimates of monthly temperature profiles are calculated by using a maximum likelihood method. It has been found that more than one "best estimate" temperature can be defined in particular areas and depths, as a consequence of climate variability. Additional near-real-time control procedures have been included in order to provide information on long-term variability associated with data. This information is included in metafiles to be used for reanalysis and studies on long-term variability and changes. © 2013 American Meteorological Society.
2013
Data processing;Data quality control;Ship observations;Quality assurance/control;In situ atmospheric observations
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/3026
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact