Soil loss evaluation by means of radioisotopic content measurements represents a promising technique, half-way between field surveys and theoretical models, which still suffers from its practical limits when applied at basin scale. A main limit is represented by the costs of field investigations and laboratory investigations on the high number of soil samples required by a traditional sampling scheme, such as regular grid or transects. A non-conventional soil sampling scheme was tested with the aim to consider a relative scanty number of soil samples and to verify the feasibility of this technique on large areas. This scheme was based on the hypothesis that land analysis and classification could point out areas characterised by homogeneous behaviour with respect to the 137Cs deposition and transmission model. A Geographic Information System (GIS)-aided procedure allowed to classify the selected basin area in pedo-morphological units, representative of the different pedologic, morphologic and land-use conditions, to locate few sampling points for each unit. Outcomes pointed out a low correlation between 137Cs contents and soil physical and compositional characteristics. Nevertheless, the isotopic methodology allowed to estimate a total soil loss value at basin scale almost consistent with both observed data, given by reservoir sedimentation measurements and estimates from the application of the RUSLE model. Thus, the results can be considered encouraging and they allow to deem that the isotopic methodology can be refined in order to account for erosion and deposition processes even at river basin scale and with a limited number of soil samples.

Soil-erosion assessment at basin scale through 137Cs content analysis based on pedo-morphological units

Tebano, Carlo;Regina, Pasquale;Felici, Fabio;Crovato, Cinzia;Bartolomei, Paolo;Armiento, Giovanna;Grauso, Sergio
2008-03-01

Abstract

Soil loss evaluation by means of radioisotopic content measurements represents a promising technique, half-way between field surveys and theoretical models, which still suffers from its practical limits when applied at basin scale. A main limit is represented by the costs of field investigations and laboratory investigations on the high number of soil samples required by a traditional sampling scheme, such as regular grid or transects. A non-conventional soil sampling scheme was tested with the aim to consider a relative scanty number of soil samples and to verify the feasibility of this technique on large areas. This scheme was based on the hypothesis that land analysis and classification could point out areas characterised by homogeneous behaviour with respect to the 137Cs deposition and transmission model. A Geographic Information System (GIS)-aided procedure allowed to classify the selected basin area in pedo-morphological units, representative of the different pedologic, morphologic and land-use conditions, to locate few sampling points for each unit. Outcomes pointed out a low correlation between 137Cs contents and soil physical and compositional characteristics. Nevertheless, the isotopic methodology allowed to estimate a total soil loss value at basin scale almost consistent with both observed data, given by reservoir sedimentation measurements and estimates from the application of the RUSLE model. Thus, the results can be considered encouraging and they allow to deem that the isotopic methodology can be refined in order to account for erosion and deposition processes even at river basin scale and with a limited number of soil samples.
1-mar-2008
137Cs;Soil erosion;River basin;GIS;Sicily
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/3042
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact