Buffelgrass (Pennisetum ciliare or Cenchrus ciliaris) is a perennial grass that has become highly invasive in the Sonoran Desert of southern Arizona. In the search for novel control strategies against this weed, strains of the foliar fungal pathogen Cochliobolus australiensis from buffelgrass have been screened for their ability to produce phytotoxic metabolites that could potentially be used as natural herbicides in an integrated pest management strategy. A new phytotoxin, named cochliotoxin, was isolated from liquid culture of this fungus together with radicinin, radicinol, and their 3-epimers. Cochliotoxin was characterized, essentially by spectroscopic methods, as 3-hydroxy-2-methyl-7-(3-methyloxiranyl)-2,3-dihydropyrano[4,3-b]pyran-4,5-dione. Its relative stereochemistry was assigned by 1H NMR techniques, while the absolute configuration (2S,3S) was determined applying the advanced Mosher's method by esterification of its hydroxy group at C-3. When bioassayed in a buffelgrass coleoptile elongation test and by leaf puncture bioassay against the host weed and two nontarget grasses, cochliotoxin showed strong phytotoxicity. In the same tests, radicinin and 3-epi-radicinin also showed phytotoxic activity, while radicinol and 3-epi-radicinol were largely inactive. All five compounds were more active in leaf puncture bioassays on buffelgrass than on the nontarget grass tanglehead (Heteropogon contortus), while the nontarget grass Arizona cottontop (Digitaria californica) was more sensitive to radicinin and 3-epi-radicinin. Cochliotoxin at low concentration was significantly more active on buffelgrass than on either native grass, but the difference was small. © 2017 The American Chemical Society and American Society of Pharmacognosy.

Cochliotoxin, a Dihydropyranopyran-4,5-dione, and Its Analogues Produced by Cochliobolus australiensis Display Phytotoxic Activity against Buffelgrass (Cenchrus ciliaris)

Cristofaro, M.
2017

Abstract

Buffelgrass (Pennisetum ciliare or Cenchrus ciliaris) is a perennial grass that has become highly invasive in the Sonoran Desert of southern Arizona. In the search for novel control strategies against this weed, strains of the foliar fungal pathogen Cochliobolus australiensis from buffelgrass have been screened for their ability to produce phytotoxic metabolites that could potentially be used as natural herbicides in an integrated pest management strategy. A new phytotoxin, named cochliotoxin, was isolated from liquid culture of this fungus together with radicinin, radicinol, and their 3-epimers. Cochliotoxin was characterized, essentially by spectroscopic methods, as 3-hydroxy-2-methyl-7-(3-methyloxiranyl)-2,3-dihydropyrano[4,3-b]pyran-4,5-dione. Its relative stereochemistry was assigned by 1H NMR techniques, while the absolute configuration (2S,3S) was determined applying the advanced Mosher's method by esterification of its hydroxy group at C-3. When bioassayed in a buffelgrass coleoptile elongation test and by leaf puncture bioassay against the host weed and two nontarget grasses, cochliotoxin showed strong phytotoxicity. In the same tests, radicinin and 3-epi-radicinin also showed phytotoxic activity, while radicinol and 3-epi-radicinol were largely inactive. All five compounds were more active in leaf puncture bioassays on buffelgrass than on the nontarget grass tanglehead (Heteropogon contortus), while the nontarget grass Arizona cottontop (Digitaria californica) was more sensitive to radicinin and 3-epi-radicinin. Cochliotoxin at low concentration was significantly more active on buffelgrass than on either native grass, but the difference was small. © 2017 The American Chemical Society and American Society of Pharmacognosy.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12079/3059
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact