ii) identify two optimized CSP plant designs to achieve best energetic and economic performances. To achieve these aims we developed a numerical model of the main system components and validated it against experimental data. This model was then integrated in a full simulation and heuristic design optimization of the plant. The results revealed that the system proposed can generate electricity in middle-Italy (Rome) at a cost of 230.25 $/MWh with a 15% reduction compared to the double tank option. Furthermore, if cogeneration is used to recover the waste heat, this system is an interesting option for users such as small districts, university campuses and hospitals. In the latter case, the optimized system pays off in 6 years and covers 80% of the heating and cooling requirements. © 2017 Elsevier Ltd
CSP plants with thermocline thermal energy storage and integrated steam generator – Techno-economic modeling and design optimization
Donato, F.
2017-01-01
Abstract
ii) identify two optimized CSP plant designs to achieve best energetic and economic performances. To achieve these aims we developed a numerical model of the main system components and validated it against experimental data. This model was then integrated in a full simulation and heuristic design optimization of the plant. The results revealed that the system proposed can generate electricity in middle-Italy (Rome) at a cost of 230.25 $/MWh with a 15% reduction compared to the double tank option. Furthermore, if cogeneration is used to recover the waste heat, this system is an interesting option for users such as small districts, university campuses and hospitals. In the latter case, the optimized system pays off in 6 years and covers 80% of the heating and cooling requirements. © 2017 Elsevier LtdI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.