The aim of the paper is based on the experimental tests of Gasification in supercritical water for humid biomass, Scenedesmus dimorphus. In this work, experimental tests were carried out in order to understand the main parameters of the SCWG process and their influence varying the total solids content, GGE and CGE gas yield and energy recovery. Based on experimental test and considering literature data about energy demand for microalgae growth and energy required for SCWG process it was possible to evaluate that with minimum total solid content necessary for setting-up a self-sustainable process considering the only energy recovery from the condensation of the water outlet the process. At the same time these simulation were repeated considering of use the enthalpy of water in SCW condition for turbine expansion instead heat recovery obtained not only syngas production usable for biofuels synthesis but also power production. © 2017 Walterde Gruyter GmbH, Berlin/Boston.

Supercritical water gasification of scenedesmus dimorphus μ-algae

Rimauro, J.;Casella, P.;Larocca, V.;Molino, A.
2017

Abstract

The aim of the paper is based on the experimental tests of Gasification in supercritical water for humid biomass, Scenedesmus dimorphus. In this work, experimental tests were carried out in order to understand the main parameters of the SCWG process and their influence varying the total solids content, GGE and CGE gas yield and energy recovery. Based on experimental test and considering literature data about energy demand for microalgae growth and energy required for SCWG process it was possible to evaluate that with minimum total solid content necessary for setting-up a self-sustainable process considering the only energy recovery from the condensation of the water outlet the process. At the same time these simulation were repeated considering of use the enthalpy of water in SCW condition for turbine expansion instead heat recovery obtained not only syngas production usable for biofuels synthesis but also power production. © 2017 Walterde Gruyter GmbH, Berlin/Boston.
Biofuels;Power energy;Supercritical fluids;μ-algae;Biomass
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/3186
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact