Despite all the acknowledged advantages in terms of environmental impact reduction, energy efficiency and noise reduction, the electric mobility market is below expectations. In fact, electric vehicles have limitations that pose several important challenges for achieving a sustainable mobility system: among them, the availability of an adequate charging infrastructure is recognized as a fundamental requirement and appropriate approaches to optimize public and private investments in this field are to be delineated. In this paper we consider actual data on conventional private vehicle usage in the urban area of Rome to carry out a strategy for the optimal allocation of charging infrastructures into portions (subareas) of the urban area, based on an analysis of a driver sample under the assumption of a complete switch to an equivalent fleet of electric vehicles. Moreover, the energy requirement for each one of the subareas is estimated in terms of the electric energy used by the equivalent fleet of electric vehicles to reach their destination. The model can be easily generalized to other problems regarding facility allocation based on user demand. © 2016 Elsevier Ltd
A demand-side approach to the optimal deployment of electric vehicle charging stations in metropolitan areas
Valenti, G.;Ragona, R.;Andrenacci, N.
2016-01-01
Abstract
Despite all the acknowledged advantages in terms of environmental impact reduction, energy efficiency and noise reduction, the electric mobility market is below expectations. In fact, electric vehicles have limitations that pose several important challenges for achieving a sustainable mobility system: among them, the availability of an adequate charging infrastructure is recognized as a fundamental requirement and appropriate approaches to optimize public and private investments in this field are to be delineated. In this paper we consider actual data on conventional private vehicle usage in the urban area of Rome to carry out a strategy for the optimal allocation of charging infrastructures into portions (subareas) of the urban area, based on an analysis of a driver sample under the assumption of a complete switch to an equivalent fleet of electric vehicles. Moreover, the energy requirement for each one of the subareas is estimated in terms of the electric energy used by the equivalent fleet of electric vehicles to reach their destination. The model can be easily generalized to other problems regarding facility allocation based on user demand. © 2016 Elsevier LtdI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.