The doubly magic nucleus 16O has a small neutron-capture cross section of just a few tens of microbarns in the astrophysical energy region. Despite this, 16O plays an important role as a neutron poison in the astrophysical slow neutron capture (s) process due to its high abundance. We present in this paper a re-evaluation of the available experimental data for 16O(n, γ)17O and derive a new recommendation for the Maxwellian-averaged cross sections between kT = 5 and 100 keV. Our new recommendations are lower up to kT = 60 keV compared to the previously recommended values but up to 14% higher at kT = 100 keV. We explore the impact of this different energy dependence on the weak s-process during core helium burning (kT = 26 keV) and shell carbon burning (kT = 90 keV) in massive stars where 16O is the most abundant isotope. © 2016. The American Astronomical Society. All rights reserved.

RE-EVALUATION of the 16O(N, γ)17O CROSS SECTION at ASTROPHYSICAL ENERGIES and ITS ROLE AS A NEUTRON POISON in the s-PROCESS

Mengoni, A.
2016-01-01

Abstract

The doubly magic nucleus 16O has a small neutron-capture cross section of just a few tens of microbarns in the astrophysical energy region. Despite this, 16O plays an important role as a neutron poison in the astrophysical slow neutron capture (s) process due to its high abundance. We present in this paper a re-evaluation of the available experimental data for 16O(n, γ)17O and derive a new recommendation for the Maxwellian-averaged cross sections between kT = 5 and 100 keV. Our new recommendations are lower up to kT = 60 keV compared to the previously recommended values but up to 14% higher at kT = 100 keV. We explore the impact of this different energy dependence on the weak s-process during core helium burning (kT = 26 keV) and shell carbon burning (kT = 90 keV) in massive stars where 16O is the most abundant isotope. © 2016. The American Astronomical Society. All rights reserved.
2016
nuclear reactions;abundances;nucleosynthesis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/3256
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact