Alpha-particle spectrometry is a standard technique for assessing the sample content in terms of alpha-decaying isotopes. A comparison of spectral deconvolutions performed adopting different peak shape functions has been carried out and a sensitivity analysis has been performed to test for the robustness of the results. As previously observed, there is evidence that the alpha peaks are well reproduced by a Gaussian modified by a function which takes into account the prominent tailing that an alpha-particle spectrum measured by means of a silicon detector exhibits. Among the different peak shape functions considered, that proposed by G. Bortels and P. Collaers, Int. J. Rad. Appl. Instrum. A 38, pp. 831–837 (1987) is the function which provides more accurate and more robust results when the spectral resolution is high enough to make such tailing significant. Otherwise, in the case of lower resolution alpha-particle spectra, simpler peak shape functions which are characterized by a lower number of fitting parameters provide adequate results. The proposed comparison can be useful for selecting the most appropriate peak shape function when accurate spectral deconvolution of alpha-particle spectra is sought. © 2016 Elsevier B.V.
A comparison of different peak shapes for deconvolution of alpha-particle spectra
Marzo, G.A.
2016-01-01
Abstract
Alpha-particle spectrometry is a standard technique for assessing the sample content in terms of alpha-decaying isotopes. A comparison of spectral deconvolutions performed adopting different peak shape functions has been carried out and a sensitivity analysis has been performed to test for the robustness of the results. As previously observed, there is evidence that the alpha peaks are well reproduced by a Gaussian modified by a function which takes into account the prominent tailing that an alpha-particle spectrum measured by means of a silicon detector exhibits. Among the different peak shape functions considered, that proposed by G. Bortels and P. Collaers, Int. J. Rad. Appl. Instrum. A 38, pp. 831–837 (1987) is the function which provides more accurate and more robust results when the spectral resolution is high enough to make such tailing significant. Otherwise, in the case of lower resolution alpha-particle spectra, simpler peak shape functions which are characterized by a lower number of fitting parameters provide adequate results. The proposed comparison can be useful for selecting the most appropriate peak shape function when accurate spectral deconvolution of alpha-particle spectra is sought. © 2016 Elsevier B.V.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.