In this work the performances of several field calibration methods for low-cost sensors, including linear/multi linear regression and supervised learning techniques, are compared. A cluster of either metal oxide or electrochemical sensors for nitrogen monoxide and carbon monoxide together with miniaturized infra-red carbon dioxide sensors was operated. Calibration was carried out during the two first weeks of evaluation against reference measurements. The accuracy of each regression method was evaluated on a five months field experiment at a semi-rural site using different indicators and techniques: orthogonal regression, target diagram, measurement uncertainty and drifts over time of sensor predictions. In addition to the analyses for ozone and nitrogen oxide already published in Part A [1], this work assessed if carbon monoxide sensors can reach the Data Quality Objective (DQOs) of 25% of uncertainty set in the European Air Quality Directive for indicative methods. As for ozone and nitrogen oxide, it was found for NO, CO and CO2 that the best agreement between sensors and reference measurements was observed for supervised learning techniques compared to linear and multilinear regression. © 2016

Field calibration of a cluster of low-cost commercially available sensors for air quality monitoring. Part B: NO, CO and CO2

Villani, M.G.
2017-01-01

Abstract

In this work the performances of several field calibration methods for low-cost sensors, including linear/multi linear regression and supervised learning techniques, are compared. A cluster of either metal oxide or electrochemical sensors for nitrogen monoxide and carbon monoxide together with miniaturized infra-red carbon dioxide sensors was operated. Calibration was carried out during the two first weeks of evaluation against reference measurements. The accuracy of each regression method was evaluated on a five months field experiment at a semi-rural site using different indicators and techniques: orthogonal regression, target diagram, measurement uncertainty and drifts over time of sensor predictions. In addition to the analyses for ozone and nitrogen oxide already published in Part A [1], this work assessed if carbon monoxide sensors can reach the Data Quality Objective (DQOs) of 25% of uncertainty set in the European Air Quality Directive for indicative methods. As for ozone and nitrogen oxide, it was found for NO, CO and CO2 that the best agreement between sensors and reference measurements was observed for supervised learning techniques compared to linear and multilinear regression. © 2016
2017
Multivariate linear regression;Validation;Artificial neural network;Air Quality Directive;Measurement uncertainty;Low-cost gas sensors
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/377
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact