The physical picture of a fluid particle pair as a couple of material points rotating around their centre of mass is proposed to model turbulent relative dispersion in the inertial range. This scheme is used to constrain the non-uniqueness problem associated to the Lagrangian models in the well-mixed class and the properties of the stochastic process derived are analysed with respect to some turbulent velocity characteristics. A simple illustrative Markov model is developed in stationary homogeneous isotropic turbulence and the particle separation statistics are compared with direct numerical simulation data. In spite of the simplicity of the model, a consistent comparison is observed in the inertial range, supporting the formulation proposed.

Lagrangian stochastic models for turbulent relative dispersion based on particle pair rotation

2008-11-01

Abstract

The physical picture of a fluid particle pair as a couple of material points rotating around their centre of mass is proposed to model turbulent relative dispersion in the inertial range. This scheme is used to constrain the non-uniqueness problem associated to the Lagrangian models in the well-mixed class and the properties of the stochastic process derived are analysed with respect to some turbulent velocity characteristics. A simple illustrative Markov model is developed in stationary homogeneous isotropic turbulence and the particle separation statistics are compared with direct numerical simulation data. In spite of the simplicity of the model, a consistent comparison is observed in the inertial range, supporting the formulation proposed.
1-nov-2008
Informatica, calcolo e modellistica
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/491
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact