A postulated steam generator tube rupture (SGTR) accident in a lead cooled accelerator driven transmuter (ADT) is investigated. The design of the ADT without intermediate loops bears the risk of water/steam blasting into the primary coolant. As a consequence a nuclear power excursion could be triggered by steam ingress into the ADT core which has a significant positive void worth. A thermal coolant-coolant interaction (CCI) might initiate a local core voiding too and additionally could lead to sloshing of the lead pool with mechanical impact of the heavy liquid on structures. The steam formation will also lead to a pressurization of the cover gas. The problems related to an SGTR are identified and investigated with the SIMMER-III accident code.

Evaluation of a Steam Generator Tube Rupture Accident in an Accelerator Driven System with Lead Cooling

Bandini, G.
2008-03-01

Abstract

A postulated steam generator tube rupture (SGTR) accident in a lead cooled accelerator driven transmuter (ADT) is investigated. The design of the ADT without intermediate loops bears the risk of water/steam blasting into the primary coolant. As a consequence a nuclear power excursion could be triggered by steam ingress into the ADT core which has a significant positive void worth. A thermal coolant-coolant interaction (CCI) might initiate a local core voiding too and additionally could lead to sloshing of the lead pool with mechanical impact of the heavy liquid on structures. The steam formation will also lead to a pressurization of the cover gas. The problems related to an SGTR are identified and investigated with the SIMMER-III accident code.
Analisi sistemi e di sicurezza
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12079/496
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact