In this study energy recovery of digestate from a biogas plant was investigated via air gasification. Gasification tests were executed in a pilot scale rotary kiln plant having a nominal biomass feeding rate of about 20 kg/h. The equivalence ratio was varied from 0.22 to 0.39 with the goal to approach the autothermal condition. Tests were carried out for 5 h in steady state condition. Syngas composition, char and gas yields were measured. To improve the cold gas efficiency of the process, a mixture of digestate and almond shells (60:40 wt%) was gasified. Autothermal condition was reached with the mixture using equivalence ratio of 0.30 where the corresponding cold gas efficiency achieved the maximum value of 55%. The raw gas had a lower heating value of 4–5 MJ/Nm3. To evaluate possible improvements in the produced gas properties, in this work the effect of steam injection was also investigated.

Air gasification of digestate and its co-gasification with residual biomass in a pilot scale rotary kiln

Freda C.;Nanna F.;Villone A.;Barisano D.;Cornacchia G.
2019-01-01

Abstract

In this study energy recovery of digestate from a biogas plant was investigated via air gasification. Gasification tests were executed in a pilot scale rotary kiln plant having a nominal biomass feeding rate of about 20 kg/h. The equivalence ratio was varied from 0.22 to 0.39 with the goal to approach the autothermal condition. Tests were carried out for 5 h in steady state condition. Syngas composition, char and gas yields were measured. To improve the cold gas efficiency of the process, a mixture of digestate and almond shells (60:40 wt%) was gasified. Autothermal condition was reached with the mixture using equivalence ratio of 0.30 where the corresponding cold gas efficiency achieved the maximum value of 55%. The raw gas had a lower heating value of 4–5 MJ/Nm3. To evaluate possible improvements in the produced gas properties, in this work the effect of steam injection was also investigated.
2019
Autothermal gasification; Co-gasification; Cold gas efficiency; Equivalence ratio; Raw gas; Simulation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/51876
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
social impact