Solution-processed hybrid bromide perovskite light-emitting-diodes (PLEDs) represent an attractive alternative to the conventional critical raw materials (CRMs) based green LEDs. In this work, we report the development and characterization of PLEDs fabricated using a mesostructured layout. We adapted and refined deposition techniques typically employed in perovskite based solar cells (PSCs) fabrication to obtain a smooth perovskite layer. The fabricated mesostructured PLEDs measured under full operative conditions showed a remarkably narrow emission spectrum, even lower than what typically obtained by nitride or phosphide green LEDs based on CRMs. An enhancement in mesoscopic PLEDs performance can be achieved optimizing the smoothness of the mesoporous layer and the thickness of the perovskite active material. (© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).
Hybrid perovskite as substituent of indium and gallium in light emitting diodes
Palma A. L.
;
2016-01-01
Abstract
Solution-processed hybrid bromide perovskite light-emitting-diodes (PLEDs) represent an attractive alternative to the conventional critical raw materials (CRMs) based green LEDs. In this work, we report the development and characterization of PLEDs fabricated using a mesostructured layout. We adapted and refined deposition techniques typically employed in perovskite based solar cells (PSCs) fabrication to obtain a smooth perovskite layer. The fabricated mesostructured PLEDs measured under full operative conditions showed a remarkably narrow emission spectrum, even lower than what typically obtained by nitride or phosphide green LEDs based on CRMs. An enhancement in mesoscopic PLEDs performance can be achieved optimizing the smoothness of the mesoporous layer and the thickness of the perovskite active material. (© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.