Besides a wide application in corrosion protection, wear resistance increase, providing thermal properties and power conversion, oxide coatings have found an alternative application in welding technology as catalysts of the tungsten inert gas (TIG) welding process. In this paper, the novel approach of fabricating a coating containing nanoparticles based on nanosized SiO2 and TiO2 and their mixtures was applied to the austenitic stainless-steel base metal. It was found that coatings increased depths of penetration, enabling a consumable-free welding. Using this method, the use of several critical and near-critical raw materials (e.g., Si and Cr), as well as the relatively expensive Ni can be completely avoided. The most effective coating in terms of weld penetration consisted of a mixture of nanoparticles, rather than unary oxide coatings based on nanoparticles. A model for liquid weld metal flow is proposed based on the metallographic examination of recrystallized grains and microhardnesses measured near the weld metal, supporting the reversed Marangoni convection theory.

Metal oxide nanoparticle-based coating as a catalyzer for A-TIG welding: Critical raw material perspective

Grilli M. L.
2019-01-01

Abstract

Besides a wide application in corrosion protection, wear resistance increase, providing thermal properties and power conversion, oxide coatings have found an alternative application in welding technology as catalysts of the tungsten inert gas (TIG) welding process. In this paper, the novel approach of fabricating a coating containing nanoparticles based on nanosized SiO2 and TiO2 and their mixtures was applied to the austenitic stainless-steel base metal. It was found that coatings increased depths of penetration, enabling a consumable-free welding. Using this method, the use of several critical and near-critical raw materials (e.g., Si and Cr), as well as the relatively expensive Ni can be completely avoided. The most effective coating in terms of weld penetration consisted of a mixture of nanoparticles, rather than unary oxide coatings based on nanoparticles. A model for liquid weld metal flow is proposed based on the metallographic examination of recrystallized grains and microhardnesses measured near the weld metal, supporting the reversed Marangoni convection theory.
2019
Nanoparticles; Oxide coating; Penetration depth; TIG welding
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/52619
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
social impact