Strong volcanic signals simultaneously recorded in polar ice sheets are commonly assigned to major low-latitude eruptions that dispersed large quantities of aerosols in the global atmosphere with the potential of inducing climate perturbations. Parent eruptions responsible for specific events are typically deduced from matching to a known volcanic eruption having coincidental date. However, more robust source linkage can be achieved only through geochemical characterisation of the airborne volcanic glass products (tephra) sometimes preserved in the polar strata. We analysed fine-grained tephra particles extracted from layers of the AD 1259 major bipolar volcanic signal in four East Antarctic ice cores drilled in different widely-spaced locations on the Antarctic Plateau. The very large database of glass-shard geochemistry combined with grain size analyses consistently indicate that the material was sourced from multiple distinct eruptions. These are the AD 1257 mega-eruption of Samalas volcano in Indonesia, recently proposed to be the single event responsible for the polar signal, as well as a newly-identified Antarctic eruption, which occurred in northern Victoria Land in AD 1259. Finally, a further eruption that took place somewhere outside of Antarctica has also contributed to tephra deposition. Our high-resolution, multiple-site approach was critical for revealing spatial heterogeneity of tephra at the continental scale. Evidence from ice-core tephra indicates recurrent explosive activity at the Antarctic volcanoes and could have implications for improved reconstruction of post-volcanic effects on climate from proxy polar records.

Multiple sources for tephra from AD 1259 volcanic signal in Antarctic ice cores

Narcisi B.;
2019

Abstract

Strong volcanic signals simultaneously recorded in polar ice sheets are commonly assigned to major low-latitude eruptions that dispersed large quantities of aerosols in the global atmosphere with the potential of inducing climate perturbations. Parent eruptions responsible for specific events are typically deduced from matching to a known volcanic eruption having coincidental date. However, more robust source linkage can be achieved only through geochemical characterisation of the airborne volcanic glass products (tephra) sometimes preserved in the polar strata. We analysed fine-grained tephra particles extracted from layers of the AD 1259 major bipolar volcanic signal in four East Antarctic ice cores drilled in different widely-spaced locations on the Antarctic Plateau. The very large database of glass-shard geochemistry combined with grain size analyses consistently indicate that the material was sourced from multiple distinct eruptions. These are the AD 1257 mega-eruption of Samalas volcano in Indonesia, recently proposed to be the single event responsible for the polar signal, as well as a newly-identified Antarctic eruption, which occurred in northern Victoria Land in AD 1259. Finally, a further eruption that took place somewhere outside of Antarctica has also contributed to tephra deposition. Our high-resolution, multiple-site approach was critical for revealing spatial heterogeneity of tephra at the continental scale. Evidence from ice-core tephra indicates recurrent explosive activity at the Antarctic volcanoes and could have implications for improved reconstruction of post-volcanic effects on climate from proxy polar records.
Antarctic rifting volcanism; Antarctica; Cryptotephra; Glass shard microanalysis; Ice cores; Samalas AD 1257 eruption; Volcanic isochron
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12079/52627
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
social impact