We analyze the semiclassical polymer dynamics of the inhomogeneous Mixmaster model by choosing the cubed scale factor as the discretized configurational variable, while the anisotropies remain pure Einsteinian variables. Such a modified theory of gravity should be regarded as the appropriate framework to describe the behavior of quantum mean values, both in polymer quantum mechanics and in Loop Quantum Cosmology. We first construct the generalized Kasner solution, including a massless scalar field and a cosmological constant in the dynamics. They account for a quasi-isotropization, inflationary-like mechanism. The resulting scenario links a singularity-free Kasner-like regime with a homogeneous and isotropic de Sitter phase. Subsequently, we investigate the role of the three-dimensional scalar curvature, demonstrating that a bounce of the point-universe against the potential walls can always occur within the polymer framework, also in the presence of a scalar field. However, the absence of the singularity implies that the curvature is bounded. Therefore, the point-universe undergoes an oscillatory regime until it oversteps the potential walls (if the Big Bounce is not reached before). After that, a final stable Kasner-like regime will last until the Big Bounce. Thus, the present study demonstrates that, as soon as a discretization of the volume of the universe is performed, the generic cosmological solution is non-chaotic and free from singularities. It is likely that the same result can be achieved also in the loop quantum cosmology approach.

Singularity-free and non-chaotic inhomogeneous Mixmaster in polymer representation for the volume of the universe

Montani G.
2019

Abstract

We analyze the semiclassical polymer dynamics of the inhomogeneous Mixmaster model by choosing the cubed scale factor as the discretized configurational variable, while the anisotropies remain pure Einsteinian variables. Such a modified theory of gravity should be regarded as the appropriate framework to describe the behavior of quantum mean values, both in polymer quantum mechanics and in Loop Quantum Cosmology. We first construct the generalized Kasner solution, including a massless scalar field and a cosmological constant in the dynamics. They account for a quasi-isotropization, inflationary-like mechanism. The resulting scenario links a singularity-free Kasner-like regime with a homogeneous and isotropic de Sitter phase. Subsequently, we investigate the role of the three-dimensional scalar curvature, demonstrating that a bounce of the point-universe against the potential walls can always occur within the polymer framework, also in the presence of a scalar field. However, the absence of the singularity implies that the curvature is bounded. Therefore, the point-universe undergoes an oscillatory regime until it oversteps the potential walls (if the Big Bounce is not reached before). After that, a final stable Kasner-like regime will last until the Big Bounce. Thus, the present study demonstrates that, as soon as a discretization of the volume of the universe is performed, the generic cosmological solution is non-chaotic and free from singularities. It is likely that the same result can be achieved also in the loop quantum cosmology approach.
Big Bounce; Inhomogeneous; Mixmaster; Polymer
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12079/52689
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
social impact