This research shows that carbon dioxide supercritical fluid (CO 2 -SF) is an emerging technology for the extraction of high interest compounds for applications in the manufacturing of pharmaceuticals, nutraceuticals, and cosmetics from microalgae. The purpose of this study is to recover fatty acids (FAs) and, more precisely, eicosapentaenoic acid (EPA) from Nannochloropsis gaditana biomass by CO 2 -SF extraction. In the paper, the effect of mechanical pre-treatment was evaluated with the aim of increasing FAs recovery. Extraction was performed at a pressure range of 250–550 bars and a CO 2 flow rate of 7.24 and 14.48 g/min, while temperature was fixed at 50 or 65 ◦ C. The effect of these parameters on the extraction yield was assessed at each extraction cycle, 20 min each, for a total extraction time of 100 min. Furthermore, the effect of biomass loading on EPA recovery was evaluated. The highest EPA extraction yield, i.e., 11.50 mg/g, corresponding to 27.4% EPA recovery, was obtained at 65 ◦ C and 250 bars with a CO 2 flow rate of 7.24 g/min and 1.0 g biomass loading. The increased CO 2 flow rate from 7.24 to 14.48 g/min enhanced the cumulative EPA recovery at 250 bars. The purity of EPA could be improved by biomass loading of 2.01 g, even if recovery was reduced.

Eicosapentaenoic acid extraction from nannochloropsis gaditana using carbon dioxide at supercritical conditions

Molino A.;Martino M.;Larocca V.;Di Sanzo G.;Spagnoletta A.;Mehariya S.;
2019

Abstract

This research shows that carbon dioxide supercritical fluid (CO 2 -SF) is an emerging technology for the extraction of high interest compounds for applications in the manufacturing of pharmaceuticals, nutraceuticals, and cosmetics from microalgae. The purpose of this study is to recover fatty acids (FAs) and, more precisely, eicosapentaenoic acid (EPA) from Nannochloropsis gaditana biomass by CO 2 -SF extraction. In the paper, the effect of mechanical pre-treatment was evaluated with the aim of increasing FAs recovery. Extraction was performed at a pressure range of 250–550 bars and a CO 2 flow rate of 7.24 and 14.48 g/min, while temperature was fixed at 50 or 65 ◦ C. The effect of these parameters on the extraction yield was assessed at each extraction cycle, 20 min each, for a total extraction time of 100 min. Furthermore, the effect of biomass loading on EPA recovery was evaluated. The highest EPA extraction yield, i.e., 11.50 mg/g, corresponding to 27.4% EPA recovery, was obtained at 65 ◦ C and 250 bars with a CO 2 flow rate of 7.24 g/min and 1.0 g biomass loading. The increased CO 2 flow rate from 7.24 to 14.48 g/min enhanced the cumulative EPA recovery at 250 bars. The purity of EPA could be improved by biomass loading of 2.01 g, even if recovery was reduced.
Eicosapentaenoic acid (EPA); Lipids; Microalgae; Nannochloropsis gaditana; Nutraceutical; Pharmaceutical; Supercritical-CO ; 2; fluid extraction ; Carbon Dioxide; Chromatography, Supercritical Fluid; Eicosapentaenoic Acid; Fatty Acids; Microalgae; Pressure; Stramenopiles; Temperature
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12079/52774
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
social impact