The aim of this paper is to briefly analyze different methodologies for development of novel materials systems and coatings for use in extreme environments, with a focus on high-temperature applications in aerospace and aeronautics. The approach is based on a comparative analysis of selected major thermal stability properties of different material systems (mainly transition-metal oxides and carbides) used in thermal protection systems and how different existing coating methods can be used as best available technologies to implement these new materials in high-temperature coatings. Finally, an original example of high-temperature coatings based on barium and lanthanum zirconates with perovskite structure obtained by electron beam vapor deposition is presented.

Development of Novel Material Systems and Coatings for Extreme Environments: A Brief Overview

Rinaldi A.;
2019

Abstract

The aim of this paper is to briefly analyze different methodologies for development of novel materials systems and coatings for use in extreme environments, with a focus on high-temperature applications in aerospace and aeronautics. The approach is based on a comparative analysis of selected major thermal stability properties of different material systems (mainly transition-metal oxides and carbides) used in thermal protection systems and how different existing coating methods can be used as best available technologies to implement these new materials in high-temperature coatings. Finally, an original example of high-temperature coatings based on barium and lanthanum zirconates with perovskite structure obtained by electron beam vapor deposition is presented.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/52826
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
social impact