Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
ENEA-IRIS Open Archive è l’archivio della produzione scientifica dell'ENEA, realizzato con l'obiettivo di raccogliere, catalogare e rendere facilmente accessibili in rete i risultati della ricerca. Gli autori dell’ENEA provvedono a depositare le proprie pubblicazioni (articoli su rivista, presentazioni a congressi, report, ecc.). In particolare, quelle finanziate dalla Commissione Europea nell’ambito del programma H2020 (che prevede il deposito obbligatorio in un Repository), una volta caricate, vengono automaticamente importate dal portale europeo OpenAIRE. È possibile inserire, o importare direttamente dalle banche dati previste, le informazioni descrittive del documento e anche allegare, ove consentito dalla normativa sul diritto d'autore, il testo completo della pubblicazione.
ENEA-IRIS Open Archive utilizza la piattaforma IRIS (Institutional Research Information System) sviluppata da CINECA.
Crohn Disease (CD) is a complex genetic disorder for which more than 140 genes have been identified using genome wide association studies (GWAS). However, the genetic architecture of the trait remains largely unknown. The recent development of machine learning (ML) approaches incited us to apply them to classify healthy and diseased people according to their genomic information. The Immunochip dataset containing 18,227 CD patients and 34,050 healthy controls enrolled and genotyped by the international Inflammatory Bowel Disease genetic consortium (IIBDGC) has been re-analyzed using a set of ML methods: penalized logistic regression (LR), gradient boosted trees (GBT) and artificial neural networks (NN). The main score used to compare the methods was the Area Under the ROC Curve (AUC) statistics. The impact of quality control (QC), imputing and coding methods on LR results showed that QC methods and imputation of missing genotypes may artificially increase the scores. At the opposite, neither the patient/control ratio nor marker preselection or coding strategies significantly affected the results. LR methods, including Lasso, Ridge and ElasticNet provided similar results with a maximum AUC of 0.80. GBT methods like XGBoost, LightGBM and CatBoost, together with dense NN with one or more hidden layers, provided similar AUC values, suggesting limited epistatic effects in the genetic architecture of the trait. ML methods detected near all the genetic variants previously identified by GWAS among the best predictors plus additional predictors with lower effects. The robustness and complementarity of the different methods are also studied. Compared to LR, non-linear models such as GBT or NN may provide robust complementary approaches to identify and classify genetic markers.
Comparative performances of machine learning methods for classifying Crohn Disease patients using genome-wide genotyping data
Romagnoni A.;Jegou S.;Van Steen K.;Wainrib G.;Hugot J. -P.;Peyrin-Biroulet L.;Chamaillard M.;Colombel J. -F.;Cottone M.;D'Amato M.;D'Inca R.;Halfvarson J.;Henderson P.;Karban A.;Kennedy N. A.;Khan M. A.;Lemann M.;Levine A.;Massey D.;Milla M.;Ng S. M. E.;Oikonomou I.;Peeters H.;Proctor D. D.;Rahier J. -F.;Rutgeerts P.;Seibold F.;Stronati L.;Taylor K. M.;Torkvist L.;Ublick K.;Van Limbergen J.;Van Gossum A.;Vatn M. H.;Zhang H.;Zhang W.;Andrews J. M.;Bampton P. A.;Barclay M.;Florin T. H.;Gearry R.;Krishnaprasad K.;Lawrance I. C.;Mahy G.;Montgomery G. W.;Radford-Smith G.;Roberts R. L.;Simms L. A.;Hanigan K.;Croft A.;Amininijad L.;Cleynen I.;Dewit O.;Franchimont D.;Georges M.;Laukens D.;Peeters H.;Rahier J. -F.;Rutgeerts P.;Theatre E.;Van Gossum A.;Vermeire S.;Aumais G.;Baidoo L.;Barrie A. M.;Beck K.;Bernard E. -J.;Binion D. G.;Bitton A.;Brant S. R.;Cho J. H.;Cohen A.;Croitoru K.;Daly M. J.;Datta L. W.;Deslandres C.;Duerr R. H.;Dutridge D.;Ferguson J.;Fultz J.;Goyette P.;Greenberg G. R.;Haritunians T.;Jobin G.;Katz S.;Lahaie R. G.;McGovern D. P.;Nelson L.;Ng S. M.;Ning K.;Oikonomou I.;Pare P.;Proctor D. D.;Regueiro M. D.;Rioux J. D.;Ruggiero E.;Schumm L. P.;Schwartz M.;Scott R.;Sharma Y.;Silverberg M. S.;Spears D.;Steinhart A. H.;Stempak J. M.;Swoger J. M.;Tsagarelis C.;Zhang W.;Zhang C.;Zhao H.;Aerts J.;Ahmad T.;Arbury H.;Attwood A.;Auton A.;Ball S. G.;Balmforth A. J.;Barnes C.;Barrett J. C.;Barroso I.;Barton A.;Bennett A. J.;Bhaskar S.;Blaszczyk K.;Bowes J.;Brand O. J.;Braund P. S.;Bredin F.;Breen G.;Brown M. J.;Bruce I. N.;Bull J.;Burren O. S.;Burton J.;Byrnes J.;Caesar S.;Cardin N.;Clee C. M.;Coffey A. J.;MC Connell J.;Conrad D. F.;Cooper J. D.;Dominiczak A. F.;Downes K.;Drummond H. E.;Dudakia D.;Dunham A.;Ebbs B.;Eccles D.;Edkins S.;Edwards C.;Elliot A.;Emery P.;Evans D. M.;Evans G.;Eyre S.;Farmer A.;Ferrier I. N.;Flynn E.;Forbes A.;Forty L.;Franklyn J. A.;Frayling T. M.;Freathy R. M.;Giannoulatou E.;Gibbs P.;Gilbert P.;Gordon-Smith K.;Gray E.;Green E.;Groves C. J.;Grozeva D.;Gwilliam R.;Hall A.;Hammond N.;Hardy M.;Harrison P.;Hassanali N.;Hebaishi H.;Hines S.;Hinks A.;Hitman G. A.;Hocking L.;Holmes C.;Howard E.;Howard P.;Howson J. M. M.;Hughes D.;Hunt S.;Isaacs J. D.;Jain M.;Jewell D. P.;Johnson T.;Jolley J. D.;Jones I. R.;Jones L. A.;Kirov G.;Langford C. F.;Lango-Allen H.;Lathrop G. M.;Lee J.;Lee K. L.;Lees C.;Lewis K.;Lindgren C. M.;Maisuria-Armer M.;Maller J.;Mansfield J.;Marchini J. L.;Martin P.;Massey D. C.;McArdle W. L.;McGuffin P.;McLay K. E.;McVean G.;Mentzer A.;Mimmack M. L.;Morgan A. E.;Morris A. P.;Mowat C.;Munroe P. B.;Myers S.;Newman W.;Nimmo E. R.;O'Donovan M. C.;Onipinla A.;Ovington N. R.;Owen M. J.;Palin K.;Palotie A.;Parnell K.;Pearson R.;Pernet D.;Perry J. R.;Phillips A.;Plagnol V.;Prescott N. J.;Prokopenko I.;Quail M. A.;Rafelt S.;Rayner N. W.;Reid D. M.;Renwick A.;Ring S. M.;Robertson N.;Robson S.;Russell E.;Clair D. S.;Sambrook J. G.;Sanderson J. D.;Sawcer S. J.;Schuilenburg H.;Scott C. E.;Scott R.;Seal S.;Shaw-Hawkins S.;Shields B. M.;Simmonds M. J.;Smyth D. J.;Somaskantharajah E.;Spanova K.;Steer S.;Stephens J.;Stevens H. E.;Stirrups K.;Stone M. A.;Strachan D. P.;Su Z.;Symmons D. P. M.;Thompson J. R.;Thomson W.;Tobin M. D.;Travers M. E.;Turnbull C.;Vukcevic D.;Wain L. V.;Walker M.;Walker N. M.;Wallace C.;Warren-Perry M.;Watkins N. A.;Webster J.;Weedon M. N.;Wilson A. G.;Woodburn M.;Wordsworth B. P.;Yau C.;Young A. H.;Zeggini E.;Brown M. A.;Burton P. R.;Caulfield M. J.;Compston A.;Farrall M.;Gough S. C. L.;Hall A. S.;Hattersley A. T.;Hill A. V. S.;Mathew C. G.;Pembrey M.;Satsangi J.;Stratton M. R.;Worthington J.;Hurles M. E.;Duncanson A.;Ouwehand W. H.;Parkes M.;Rahman N.;Todd J. A.;Samani N. J.;Kwiatkowski D. P.;McCarthy M. I.;Craddock N.;Deloukas P.;Donnelly P.;Blackwell J. M.;Bramon E.;Casas J. P.;Corvin A.;Jankowski J.;Markus H. S.;Palmer C. N.;Plomin R.;Rautanen A.;Trembath R. C.;Viswanathan A. C.;Wood N. W.;Spencer C. C. A.;Band G.;Bellenguez C.;Freeman C.;Hellenthal G.;Giannoulatou E.;Pirinen M.;Pearson R.;Strange A.;Blackburn H.;Bumpstead S. J.;Dronov S.;Gillman M.;Jayakumar A.;McCann O. T.;Liddle J.;Potter S. C.;Ravindrarajah R.;Ricketts M.;Waller M.;Weston P.;Widaa S.;Whittaker P.
2019-01-01
Abstract
Crohn Disease (CD) is a complex genetic disorder for which more than 140 genes have been identified using genome wide association studies (GWAS). However, the genetic architecture of the trait remains largely unknown. The recent development of machine learning (ML) approaches incited us to apply them to classify healthy and diseased people according to their genomic information. The Immunochip dataset containing 18,227 CD patients and 34,050 healthy controls enrolled and genotyped by the international Inflammatory Bowel Disease genetic consortium (IIBDGC) has been re-analyzed using a set of ML methods: penalized logistic regression (LR), gradient boosted trees (GBT) and artificial neural networks (NN). The main score used to compare the methods was the Area Under the ROC Curve (AUC) statistics. The impact of quality control (QC), imputing and coding methods on LR results showed that QC methods and imputation of missing genotypes may artificially increase the scores. At the opposite, neither the patient/control ratio nor marker preselection or coding strategies significantly affected the results. LR methods, including Lasso, Ridge and ElasticNet provided similar results with a maximum AUC of 0.80. GBT methods like XGBoost, LightGBM and CatBoost, together with dense NN with one or more hidden layers, provided similar AUC values, suggesting limited epistatic effects in the genetic architecture of the trait. ML methods detected near all the genetic variants previously identified by GWAS among the best predictors plus additional predictors with lower effects. The robustness and complementarity of the different methods are also studied. Compared to LR, non-linear models such as GBT or NN may provide robust complementary approaches to identify and classify genetic markers.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/53419
Citazioni
ND
75
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.