The evaluation of photovoltaic (PV) system’s efficiency loss, due to the onset of faults that reduce the output power, is crucial. The challenge is to speed up the evaluation of electric efficiency by coupling the electric characterization of panels with information gathered from module diagnosis, amongst which the most commonly employed technique is thermographic inspection. The aim of this work is to correlate panels’ thermal images with their efficiency: a “thermal signature” of panels can be of help in identifying the fault typology and, moreover, for assessing efficiency loss. This allows to identify electrical power output losses without interrupting the PV system operation thanks to an advanced PV thermography characterization. In this paper, 12 faulted working panels were investigated. Their electrical models were implemented in MATLAB environment and developed to retrieve the ideal I-V characteristic (from ratings), the actual (operative) I-V characteristics and electric efficiency. Given the curves shape and relative difference, based on three reference points (namely, open circuit, short circuit, and maximum power points), faults’ typology has been evidenced. Information gathered from infrared thermography imaging, simultaneously carried out on panels during operation, were matched with those from electrical characterization. Panels’ “thermal signature” has been coupled with the “electrical signature”, to obtain an overall depiction of panels’ health status.

On field infrared thermography sensing for PV system efficiency assessment: Results and comparison with electrical models

Nardi I.
Writing – Original Draft Preparation
;
2020-01-01

Abstract

The evaluation of photovoltaic (PV) system’s efficiency loss, due to the onset of faults that reduce the output power, is crucial. The challenge is to speed up the evaluation of electric efficiency by coupling the electric characterization of panels with information gathered from module diagnosis, amongst which the most commonly employed technique is thermographic inspection. The aim of this work is to correlate panels’ thermal images with their efficiency: a “thermal signature” of panels can be of help in identifying the fault typology and, moreover, for assessing efficiency loss. This allows to identify electrical power output losses without interrupting the PV system operation thanks to an advanced PV thermography characterization. In this paper, 12 faulted working panels were investigated. Their electrical models were implemented in MATLAB environment and developed to retrieve the ideal I-V characteristic (from ratings), the actual (operative) I-V characteristics and electric efficiency. Given the curves shape and relative difference, based on three reference points (namely, open circuit, short circuit, and maximum power points), faults’ typology has been evidenced. Information gathered from infrared thermography imaging, simultaneously carried out on panels during operation, were matched with those from electrical characterization. Panels’ “thermal signature” has been coupled with the “electrical signature”, to obtain an overall depiction of panels’ health status.
2020
Electric efficiency
Electronic systems
Faults diagnostic
Infrared thermography
PV system
File in questo prodotto:
File Dimensione Formato  
2020 On field infrared thermography sensing for PV system efficiency assessment.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.88 MB
Formato Adobe PDF
4.88 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/55625
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
social impact