Energy is the fundamental requirement of all physical, chemical, and biological processes which are utilized for better living standards. The toll that the process of development takes on the environment and economic activity is evident from the arising concerns about sustaining the industrialization that has happened in the last centuries. The increase in carbon footprint and the large-scale pollution caused by industrialization has led researchers to think of new ways to sustain the developmental activities, whilst simultaneously minimizing the harming effects on the enviroment. Therefore, decarbonization strategies have become an important factor in industrial expansion, along with the invention of new catalytic methods for carrying out non-thermal reactions, energy storage methods and environmental remediation through the removal or breakdown of harmful chemicals released during manufacturing processes. The present article discusses the structural features and photocatalytic applications of a variety of metal oxide-based materials. Moreover, the practical applicability of these materials is also discussed, as well as the transition of production to an industrial scale. Consequently, this study deals with a concise framework to link metal oxide application options within energy, environmental and economic sustainability, exploring the footprint analysis as well.

A systematic review of metal oxide applications for energy and environmental sustainability

Grilli M. L.;
2020-01-01

Abstract

Energy is the fundamental requirement of all physical, chemical, and biological processes which are utilized for better living standards. The toll that the process of development takes on the environment and economic activity is evident from the arising concerns about sustaining the industrialization that has happened in the last centuries. The increase in carbon footprint and the large-scale pollution caused by industrialization has led researchers to think of new ways to sustain the developmental activities, whilst simultaneously minimizing the harming effects on the enviroment. Therefore, decarbonization strategies have become an important factor in industrial expansion, along with the invention of new catalytic methods for carrying out non-thermal reactions, energy storage methods and environmental remediation through the removal or breakdown of harmful chemicals released during manufacturing processes. The present article discusses the structural features and photocatalytic applications of a variety of metal oxide-based materials. Moreover, the practical applicability of these materials is also discussed, as well as the transition of production to an industrial scale. Consequently, this study deals with a concise framework to link metal oxide application options within energy, environmental and economic sustainability, exploring the footprint analysis as well.
2020
Multilayer metal oxides
Nanocomposites
Photocatalyst
Solar energy
File in questo prodotto:
File Dimensione Formato  
A Systematic Review of Metal Oxide Applications for.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 8.92 MB
Formato Adobe PDF
8.92 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/56166
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 112
social impact