An innovative steam reformer for hydrogen production at temperatures lower than 550 °C has been developed in the EU project CoMETHy (Compact Multifuel-Energy To Hydrogen converter). The steam reforming process has been specifically tailored and re-designed to be combined with Concentrating Solar plants using “solar salts”: a low-temperature steam reforming reactor was developed, operating at temperatures up to 550 °C, much lower than the traditional process (usually > 850 °C). This result was obtained after extensive research, going from the development of basic components (catalysts and membranes) to their integration in an innovative membrane reformer heated with molten salts, where both hydrogen production and purification occur in a single stage. The reduction of process temperatures is achieved by applying advanced catalyst systems and hydrogen selective Pd-based membranes. Process heat is supplied by using a low-cost and environmentally friendly binary NaNO3/KNO3 liquid mixture (60/40 w/w) as heat transfer fluid; such mixture is commonly used for the same purpose in the concentrating solar industry, so that the process can easily be coupled with concentrating solar power (CSP) plants for the supply of renewable process heat. This paper deals with the successful operation and validation of a pilot scale reactor with a nominal capacity of 2 Nm3/h of pure hydrogen from methane. The plant was operated with molten salt circulation for about 700 h, while continuous operation of the reactor was achieved for about 150 h with several switches of operating conditions such as molten salts inlet temperature, sweep steam flow rate and steam-to-carbon feed ratio. The results obtained show that the membrane reformer allows to achieve twice as high a conversion compared to a conventional reformer operating at thermodynamic equilibrium under the same conditions considered in this paper. A highly pure hydrogen permeate stream was obtained (>99.8%), while the outlet retentate stream had low CO concentration (<2%). No macroscopic signs of reactor performance loss were observed over the experimental operation period.

Experimental validation of a pilot membrane reactor for hydrogen production by solar steam reforming of methane at maximum 550 °C using molten salts as heat transfer fluid

Giaconia A.;Caputo G.;Turchetti L.;Monteleone G.;Giannini A.;
2020

Abstract

An innovative steam reformer for hydrogen production at temperatures lower than 550 °C has been developed in the EU project CoMETHy (Compact Multifuel-Energy To Hydrogen converter). The steam reforming process has been specifically tailored and re-designed to be combined with Concentrating Solar plants using “solar salts”: a low-temperature steam reforming reactor was developed, operating at temperatures up to 550 °C, much lower than the traditional process (usually > 850 °C). This result was obtained after extensive research, going from the development of basic components (catalysts and membranes) to their integration in an innovative membrane reformer heated with molten salts, where both hydrogen production and purification occur in a single stage. The reduction of process temperatures is achieved by applying advanced catalyst systems and hydrogen selective Pd-based membranes. Process heat is supplied by using a low-cost and environmentally friendly binary NaNO3/KNO3 liquid mixture (60/40 w/w) as heat transfer fluid; such mixture is commonly used for the same purpose in the concentrating solar industry, so that the process can easily be coupled with concentrating solar power (CSP) plants for the supply of renewable process heat. This paper deals with the successful operation and validation of a pilot scale reactor with a nominal capacity of 2 Nm3/h of pure hydrogen from methane. The plant was operated with molten salt circulation for about 700 h, while continuous operation of the reactor was achieved for about 150 h with several switches of operating conditions such as molten salts inlet temperature, sweep steam flow rate and steam-to-carbon feed ratio. The results obtained show that the membrane reformer allows to achieve twice as high a conversion compared to a conventional reformer operating at thermodynamic equilibrium under the same conditions considered in this paper. A highly pure hydrogen permeate stream was obtained (>99.8%), while the outlet retentate stream had low CO concentration (<2%). No macroscopic signs of reactor performance loss were observed over the experimental operation period.
Hydrogen production
Membrane reactor
Molten salt
Pd-based membrane
Solar reforming
Steam methane reforming
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12079/56423
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
social impact