The European MOTTLES project set-up a new-generation network for ozone (O3) monitoring in 17 plots in France, Italy and Romania. These monitoring stations allowed: (1) estimating the accumulated exposure AOT40 and stomatal O3 fluxes (PODY) with an hourly threshold of uptake (Y) to represent the detoxification capacity of trees (POD1, with Y = 1 nmol O3 m−2 s−1 per leaf area); and (2) collecting data of forest-response indicators, i.e. crown defoliation and visible foliar O3-like injury over the time period 2017–2019. The soil water content was the most important parameter affecting crown defoliation and was a key factor affecting the severity of visible foliar O3-like injury on the dominant tree species in a plot. The soil water content is thus an essential parameter in the PODY estimation, particularly for water-limited environments. An assessment based on stomatal flux-based standard and on real plant symptoms is more appropriated than the exposure-based method for protecting vegetation. From flux-effect relationships, we derived flux-based critical levels (CLef) for forest protection against visible foliar O3-like injury. We recommend CLef of 5 and 12 mmol m−2 POD1 for broadleaved species and conifers, respectively. Before using PODY as legislative standard in Europe, we recommend using the CLec for ≥ 25% of crown defoliation in a plot: 17,000 and 19,000 nmol mol−1 h AOT40 for conifers and broadleaved species, respectively.
Epidemiological derivation of flux-based critical levels for visible ozone injury in European forests
De Marco A.;
2020-01-01
Abstract
The European MOTTLES project set-up a new-generation network for ozone (O3) monitoring in 17 plots in France, Italy and Romania. These monitoring stations allowed: (1) estimating the accumulated exposure AOT40 and stomatal O3 fluxes (PODY) with an hourly threshold of uptake (Y) to represent the detoxification capacity of trees (POD1, with Y = 1 nmol O3 m−2 s−1 per leaf area); and (2) collecting data of forest-response indicators, i.e. crown defoliation and visible foliar O3-like injury over the time period 2017–2019. The soil water content was the most important parameter affecting crown defoliation and was a key factor affecting the severity of visible foliar O3-like injury on the dominant tree species in a plot. The soil water content is thus an essential parameter in the PODY estimation, particularly for water-limited environments. An assessment based on stomatal flux-based standard and on real plant symptoms is more appropriated than the exposure-based method for protecting vegetation. From flux-effect relationships, we derived flux-based critical levels (CLef) for forest protection against visible foliar O3-like injury. We recommend CLef of 5 and 12 mmol m−2 POD1 for broadleaved species and conifers, respectively. Before using PODY as legislative standard in Europe, we recommend using the CLec for ≥ 25% of crown defoliation in a plot: 17,000 and 19,000 nmol mol−1 h AOT40 for conifers and broadleaved species, respectively.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.