The adoption of sewage sludge as an agricultural management strategy to improve soil properties and crop production is attracting great interest. Despite many positive effects on soil inorganic and organic components reported for different soil types, little information is available on sewage sludge application on Mediterranean soils, as well as on its use at different dose rates. The objectives of the present research was to evaluate, through an integrated approach, the effects of sewage sludge compost from urban wastewater on physicochemical, hydrological, biochemical parameters, and microbiota composition in soil pots under a three-year crop rotation system. Four different doses of sewage sludge compost (C3, C6, C9, C12) from municipal wastewater and a dose of them in combination with mineral fertilizer (C6N) were used. We have used 3-6-9-12 Mg/ha of sewage sludge compost for the treatments C3, C6, C9 and C12, respectively, and 6 Mg/ha of sewage sludge compost in combination with 60 kg/ha of ammonium nitrate for the treatment C6N.The effects were compared to non-fertilized (C0) and mineral fertilized (Min) sets of controls. The electrical conductivity, soil pH, stability of soil aggregates, percent of moisture of the dry soil both at the field capacity and at the wilting point, available P, and exchangeable K were all positively affected by increasing the amounts of composted sludge. The organic carbon and total N increased up to 66% and 39%, respectively. Increased enzymatic activities and microbial biomass were also observed in soil after the application of sewage sludge compost when compared to un-amended control. A higher richness and evenness among the soil plots amended with sewage sludge compost was observed, with no significant differences among the application dose rates, when compared to the un-amended soil control and soil treated with a mineral fertilizer. A three-year amendment was able to separate soil plots amended with high doses of sewage sludge compost from the low dose amended and control samples. Among the microbial groups responsible for such marked separation, bacteria belonging to Actinobacteria, Acidobacteria, Cyanobacteria and Bacteroidetes contribute the most, with a shift from oligotrophic to copiotrophic taxa. Significant changes in bacterial composition and taxonomic structure should be considered in order to properly balance agronomic and economic advantages with environmental concerns. After all, our results have evidenced the effects of sewage sludge amendment on different soil properties, microbial activity, and composition already after a short period of application. The findings are particularly relevant in semiarid soils, where an immediate restoration of soil fertility by short-term compost application is needed.
Short-term effects of sewage sludge compost amendment on semiarid soil
De Corato U.;
2020-01-01
Abstract
The adoption of sewage sludge as an agricultural management strategy to improve soil properties and crop production is attracting great interest. Despite many positive effects on soil inorganic and organic components reported for different soil types, little information is available on sewage sludge application on Mediterranean soils, as well as on its use at different dose rates. The objectives of the present research was to evaluate, through an integrated approach, the effects of sewage sludge compost from urban wastewater on physicochemical, hydrological, biochemical parameters, and microbiota composition in soil pots under a three-year crop rotation system. Four different doses of sewage sludge compost (C3, C6, C9, C12) from municipal wastewater and a dose of them in combination with mineral fertilizer (C6N) were used. We have used 3-6-9-12 Mg/ha of sewage sludge compost for the treatments C3, C6, C9 and C12, respectively, and 6 Mg/ha of sewage sludge compost in combination with 60 kg/ha of ammonium nitrate for the treatment C6N.The effects were compared to non-fertilized (C0) and mineral fertilized (Min) sets of controls. The electrical conductivity, soil pH, stability of soil aggregates, percent of moisture of the dry soil both at the field capacity and at the wilting point, available P, and exchangeable K were all positively affected by increasing the amounts of composted sludge. The organic carbon and total N increased up to 66% and 39%, respectively. Increased enzymatic activities and microbial biomass were also observed in soil after the application of sewage sludge compost when compared to un-amended control. A higher richness and evenness among the soil plots amended with sewage sludge compost was observed, with no significant differences among the application dose rates, when compared to the un-amended soil control and soil treated with a mineral fertilizer. A three-year amendment was able to separate soil plots amended with high doses of sewage sludge compost from the low dose amended and control samples. Among the microbial groups responsible for such marked separation, bacteria belonging to Actinobacteria, Acidobacteria, Cyanobacteria and Bacteroidetes contribute the most, with a shift from oligotrophic to copiotrophic taxa. Significant changes in bacterial composition and taxonomic structure should be considered in order to properly balance agronomic and economic advantages with environmental concerns. After all, our results have evidenced the effects of sewage sludge amendment on different soil properties, microbial activity, and composition already after a short period of application. The findings are particularly relevant in semiarid soils, where an immediate restoration of soil fertility by short-term compost application is needed.File | Dimensione | Formato | |
---|---|---|---|
Short-Term Effects of Sewage Sludge Compost Amendment on Semiarid Soil.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.6 MB
Formato
Adobe PDF
|
2.6 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.