The design activities of an insulated Plasma Facing Components-Cassette Body (PFCs-CB) support has been carried out under the pre-conceptual design phase for Eurofusion-DEMO Work Package DIV-1 “Divertor Cassette Design and Integration” - Eurofusion Power Plant Physics & Technology (PPPT) program. The Eurofusion-DEMO divertor is a key in-vessel component with PFCs which directly interact with the plasma scrape-off layer. The PFCs have to cope with high heat loads, neutron irradiation and electromagnetic loads. The mechanical integrity of the PFCs and water cooling pipes can be jeopardized by high heat loads and by electromagnetic loads generated in a disruption event. In European-DEMO the possibility to estimate the heat load by measuring the relative thermocurrents is under investigation. In order to allow thermocurrents measurements, a divertor design option provides that PFCs are electrically insulated from CB. In this work authors aim to analyze the opportunity that the PFC-CB fixing system incorporates an electrical insulation system, thus acquiring also an important diagnostic role in the measurement of the thermocurrents and in the management of the current flows. The possible use of ceramic material (e.g. alumina) as the insulating layer between the support components is investigated.

Insulated fixation system of plasma facing components to the divertor cassette in Eurofusion-DEMO

Mazzone G.;Visca E.;
2020

Abstract

The design activities of an insulated Plasma Facing Components-Cassette Body (PFCs-CB) support has been carried out under the pre-conceptual design phase for Eurofusion-DEMO Work Package DIV-1 “Divertor Cassette Design and Integration” - Eurofusion Power Plant Physics & Technology (PPPT) program. The Eurofusion-DEMO divertor is a key in-vessel component with PFCs which directly interact with the plasma scrape-off layer. The PFCs have to cope with high heat loads, neutron irradiation and electromagnetic loads. The mechanical integrity of the PFCs and water cooling pipes can be jeopardized by high heat loads and by electromagnetic loads generated in a disruption event. In European-DEMO the possibility to estimate the heat load by measuring the relative thermocurrents is under investigation. In order to allow thermocurrents measurements, a divertor design option provides that PFCs are electrically insulated from CB. In this work authors aim to analyze the opportunity that the PFC-CB fixing system incorporates an electrical insulation system, thus acquiring also an important diagnostic role in the measurement of the thermocurrents and in the management of the current flows. The possible use of ceramic material (e.g. alumina) as the insulating layer between the support components is investigated.
Divertor assembly
Divertor Plasma Facing Componentsfixation system
Eurofusion-DEMO
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12079/57232
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
social impact