Using a combination of enhanced sampling molecular dynamics techniques and non-equilibrium alchemical transformations with full atomistic details, we have shown that hydroxychloroquine (HCQ) may act as a mild inhibitor of important functional proteins for SARS-CoV2 replication, with potency increasing in the series PLpro, 3CLpro, RdRp. By analyzing the bound state configurations, we were able to improve the potency for the 3CLpro target, designing a novel HCQ-inspired compound, named PMP329, with predicted nanomolar activity. If confirmed in vitro, our results provide a molecular rationale for the use of HCQ or of strictly related derivatives in the treatment of Covid-19. This journal is
Interaction of hydroxychloroquine with SARS-CoV2 functional proteins using all-atoms non-equilibrium alchemical simulations
Guarnieri G.;Iannone F.
2020-01-01
Abstract
Using a combination of enhanced sampling molecular dynamics techniques and non-equilibrium alchemical transformations with full atomistic details, we have shown that hydroxychloroquine (HCQ) may act as a mild inhibitor of important functional proteins for SARS-CoV2 replication, with potency increasing in the series PLpro, 3CLpro, RdRp. By analyzing the bound state configurations, we were able to improve the potency for the 3CLpro target, designing a novel HCQ-inspired compound, named PMP329, with predicted nanomolar activity. If confirmed in vitro, our results provide a molecular rationale for the use of HCQ or of strictly related derivatives in the treatment of Covid-19. This journal isI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.