The time evolution of humidity and temperature above Dome C (Antarctica) has been investigated by considering data from (1) meteorological radiosondes (2005-2017), (2) the microwave radiometer HAMSTRAD (2012-2017), (3) four modern meteorological reanalyses (1980-2017) and (4) the southern annular mode (SAM) index (1980-2017). From these observations (2005-2017), a significant moistening trend (0.08 ± 0.06 kg m-2 dec-1) is associated with a significant warming trend (1.08 ± 0.55 K dec-1) in summer. Conversely, a significant drying trend of -0.04 ± 0.03 kg m-2 dec-1 (-0.05 ± 0.03 kg m-2 dec-1) is associated with a significant cooling trend of -2.4 ± 1.2 K dec-1 (-5.1 ± 2.0 K dec-1) in autumn (winter), with no significant trends in the spring. We demonstrate that 1) the trends identified in the radiosondes (2005-2017) are also present in the reanalyses and 2) the multidecadal variability of integrated water vapor and near-surface temperature (1980-2017) is strongly influenced by variability in the SAM index for all seasons but spring. Our study suggests that the decadal trends observed in humidity and near-surface temperature at Dome C (2005-2017) reflect the multidecadal variability of the atmosphere, and are not indicative of long-term trends that may be related to global climate change.
Trends in atmospheric humidity and temperature above Dome C, antarctica evaluated from observations and reanalyses
Grigioni P.;
2020-01-01
Abstract
The time evolution of humidity and temperature above Dome C (Antarctica) has been investigated by considering data from (1) meteorological radiosondes (2005-2017), (2) the microwave radiometer HAMSTRAD (2012-2017), (3) four modern meteorological reanalyses (1980-2017) and (4) the southern annular mode (SAM) index (1980-2017). From these observations (2005-2017), a significant moistening trend (0.08 ± 0.06 kg m-2 dec-1) is associated with a significant warming trend (1.08 ± 0.55 K dec-1) in summer. Conversely, a significant drying trend of -0.04 ± 0.03 kg m-2 dec-1 (-0.05 ± 0.03 kg m-2 dec-1) is associated with a significant cooling trend of -2.4 ± 1.2 K dec-1 (-5.1 ± 2.0 K dec-1) in autumn (winter), with no significant trends in the spring. We demonstrate that 1) the trends identified in the radiosondes (2005-2017) are also present in the reanalyses and 2) the multidecadal variability of integrated water vapor and near-surface temperature (1980-2017) is strongly influenced by variability in the SAM index for all seasons but spring. Our study suggests that the decadal trends observed in humidity and near-surface temperature at Dome C (2005-2017) reflect the multidecadal variability of the atmosphere, and are not indicative of long-term trends that may be related to global climate change.File | Dimensione | Formato | |
---|---|---|---|
atmosphere-11-00836-v3.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
6.88 MB
Formato
Adobe PDF
|
6.88 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.