Background: Cashmere goat is known for its precious undercoat. Being photoperiod-dictated, cashmere growth has been studied focusing mainly on hair follicle cycle phases (anagen, catagen and telogen). An accurate molecular knowledge of the goat hair follicle cycle, disentangling gene expression changes during phases and recognizing timing boundaries, could be useful to improve cashmere goat management and ultimately cashmere production. Results: To better describe goat's hair follicle transcriptome we applied RNA-sequencing to isolated hair follicles from five Italian cashmere goats, during the anagen and catagen phase, identifying total of 214 differentially expressed genes (DEGs): 97 were up-regulated while 117 were down-regulated in catagen with respect to anagen. Gene Ontology and pathway analysis were performed. We detected 144 significant pathways spanning from estrogen, pluripotency of stem cells, thermogenesis and fatty acid metabolism that were strongly expressed during the hair follicle phases analysed. Finally, we validated promising DEGs by RT-qPCR in the same set of samples as well as in hair follicles and entire skin biopsies of another cashmere goats cohort accounting for early anagen, anagen, early catagen, and catagen phases. Conclusions: As in the isolated hair follicles, some target genes were homogenously modulated during the four hair follicle phases. Ceruloplasmin (CP) and Keratin 4 (K4), confirmed their clear cut expression between growing and resting phase. In fact, K4 was almost absent in catagen phases while CP was barely expressed in anagen phases. In particular, the strong expression of K4 in early anagen makes it an eligible marker to track the beginning of a new hair cycle, and therefore defining the optimum time for cashmere harvesting.

Shedding light on cashmere goat hair follicle biology: From morphology analyses to transcriptomic landascape

Antonini M.;
2020-01-01

Abstract

Background: Cashmere goat is known for its precious undercoat. Being photoperiod-dictated, cashmere growth has been studied focusing mainly on hair follicle cycle phases (anagen, catagen and telogen). An accurate molecular knowledge of the goat hair follicle cycle, disentangling gene expression changes during phases and recognizing timing boundaries, could be useful to improve cashmere goat management and ultimately cashmere production. Results: To better describe goat's hair follicle transcriptome we applied RNA-sequencing to isolated hair follicles from five Italian cashmere goats, during the anagen and catagen phase, identifying total of 214 differentially expressed genes (DEGs): 97 were up-regulated while 117 were down-regulated in catagen with respect to anagen. Gene Ontology and pathway analysis were performed. We detected 144 significant pathways spanning from estrogen, pluripotency of stem cells, thermogenesis and fatty acid metabolism that were strongly expressed during the hair follicle phases analysed. Finally, we validated promising DEGs by RT-qPCR in the same set of samples as well as in hair follicles and entire skin biopsies of another cashmere goats cohort accounting for early anagen, anagen, early catagen, and catagen phases. Conclusions: As in the isolated hair follicles, some target genes were homogenously modulated during the four hair follicle phases. Ceruloplasmin (CP) and Keratin 4 (K4), confirmed their clear cut expression between growing and resting phase. In fact, K4 was almost absent in catagen phases while CP was barely expressed in anagen phases. In particular, the strong expression of K4 in early anagen makes it an eligible marker to track the beginning of a new hair cycle, and therefore defining the optimum time for cashmere harvesting.
2020
Differentially expressed genes
Hair follicle cycle
Keratin 4
RNAseq
Animals
Gene Expression Profiling
Goats
Hair Follicle
Real-Time Polymerase Chain Reaction
Sequence Analysis, RNA
Transcriptome
File in questo prodotto:
File Dimensione Formato  
Shedding light on cashmere goat hair follicle biology_ from morphology analyses to transcriptomic landascape.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.1 MB
Formato Adobe PDF
2.1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/57487
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
social impact