Light is a pivotal environmental element capable of influencing multiple physiological processes across the entire plant life cycle. Over the course of their evolution, plants have developed several families of photoreceptors such as phytochromes, phototropins, ultraviolet (UV) resistance locus 8 and cryptochromes (crys), in order to sense light stimuli and respond to their changes. Numerous genetic studies have demonstrated that functional alterations to these photoreceptors cause a change in important agronomical traits. In particular, crys, which absorb UVA/blue light, can influence seed germination, flowering induction, plant architecture, fruit metabolic content and resistance to biotic and abiotic stresses. In the years to come, the rising temperatures and alterations to precipitation patterns generated by climate change will present a dramatic challenge for our agricultural system, with its few varieties characterized by a narrow genetic pool derived from artificial selection. Here, we review the main roles of crys in determining important agronomic traits in crops, we discuss the opportunities of using these photoreceptors as genetic targets for tuning plant physiological responses to environmental change, and the molecular strategies used so far to manipulate this family of photoreceptors.

Cryptochromes in the field: how blue light influences crop development

Fantini E.;Facella P.
2020

Abstract

Light is a pivotal environmental element capable of influencing multiple physiological processes across the entire plant life cycle. Over the course of their evolution, plants have developed several families of photoreceptors such as phytochromes, phototropins, ultraviolet (UV) resistance locus 8 and cryptochromes (crys), in order to sense light stimuli and respond to their changes. Numerous genetic studies have demonstrated that functional alterations to these photoreceptors cause a change in important agronomical traits. In particular, crys, which absorb UVA/blue light, can influence seed germination, flowering induction, plant architecture, fruit metabolic content and resistance to biotic and abiotic stresses. In the years to come, the rising temperatures and alterations to precipitation patterns generated by climate change will present a dramatic challenge for our agricultural system, with its few varieties characterized by a narrow genetic pool derived from artificial selection. Here, we review the main roles of crys in determining important agronomic traits in crops, we discuss the opportunities of using these photoreceptors as genetic targets for tuning plant physiological responses to environmental change, and the molecular strategies used so far to manipulate this family of photoreceptors.
Light
Plants
Cryptochromes
Phytochrome
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/57503
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
social impact