The objective proposed by the EU to drastically reduce vehicular CO2 emission for the years up to 2030 requires an increase of propulsion systems- efficiency, and accordingly, the improvement their technology. Hybrid electric vehicles could have a chance of achieving this, by recovering energy during braking phases, running in pure electric mode and allowing the internal combustion engine to operate under better efficiency conditions, while maintaining traditionally expected vehicle performances (mileage, weight, available on-board volume, etc.). The energy storage systems for hybrid electric vehicles (HEVs) have different requirements than those designed for Battery Electric Vehicles (BEVs); high specific power is normally the most critical issue. Using Li-ion Batteries (LiBs) in the designing of on-board Energy Storage Systems (ESS) based only on power specifications gives an ESS with an energy capacity which is sufficient for vehicle requirements. The highest specific power LiBs are therefore chosen among those technologically available. All this leads to an ESS design that is strongly stressed over time, because current output is very high and very rapidly varies, during both traction and regeneration phases. The resulting efficiency of the ESS is correspondingly lowered, and LiBs lifetime can be relevantly affected. Such a problem can be overcome by adopting hybrid storage systems, coupling LiBs and UltraCapacitors (UCs); by properly dimensioning and controlling the ESS- components, in fact, the current output of the batteries can be reduced and smoothed, using UCs during transients. In this paper, a simulation model, calibrated and validated on an engine testbed, has been used to evaluate the performances of a hybrid storage HEV microcar under different operative conditions (driving cycles, environment temperature and ESS State of Charge). Results show that the hybridization of the powertrain may reduce fuel consumption by up to 27%, while LiBs lifetime may be more than doubled.

On the hybridization of microcars with hybrid ultracapacitors and Li-Ion batteries storage systems

Ortenzi F.;Andrenacci N.;Pasquali M.;
2020-01-01

Abstract

The objective proposed by the EU to drastically reduce vehicular CO2 emission for the years up to 2030 requires an increase of propulsion systems- efficiency, and accordingly, the improvement their technology. Hybrid electric vehicles could have a chance of achieving this, by recovering energy during braking phases, running in pure electric mode and allowing the internal combustion engine to operate under better efficiency conditions, while maintaining traditionally expected vehicle performances (mileage, weight, available on-board volume, etc.). The energy storage systems for hybrid electric vehicles (HEVs) have different requirements than those designed for Battery Electric Vehicles (BEVs); high specific power is normally the most critical issue. Using Li-ion Batteries (LiBs) in the designing of on-board Energy Storage Systems (ESS) based only on power specifications gives an ESS with an energy capacity which is sufficient for vehicle requirements. The highest specific power LiBs are therefore chosen among those technologically available. All this leads to an ESS design that is strongly stressed over time, because current output is very high and very rapidly varies, during both traction and regeneration phases. The resulting efficiency of the ESS is correspondingly lowered, and LiBs lifetime can be relevantly affected. Such a problem can be overcome by adopting hybrid storage systems, coupling LiBs and UltraCapacitors (UCs); by properly dimensioning and controlling the ESS- components, in fact, the current output of the batteries can be reduced and smoothed, using UCs during transients. In this paper, a simulation model, calibrated and validated on an engine testbed, has been used to evaluate the performances of a hybrid storage HEV microcar under different operative conditions (driving cycles, environment temperature and ESS State of Charge). Results show that the hybridization of the powertrain may reduce fuel consumption by up to 27%, while LiBs lifetime may be more than doubled.
2020
Hybrid storage
Hybrid vehicles
Li-Ion Battery
Microcars
UltraCapacitors
File in questo prodotto:
File Dimensione Formato  
energies-13-03230-v2.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 5.38 MB
Formato Adobe PDF
5.38 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/57825
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
social impact