Low-cost carbon-conductive films were screen-printed on a Plexiglas® substrate, and then, after a standard annealing procedure, subjected to femtosecond (fs) laser treatments at different values of total accumulated laser fluence ΦA. Four-point probe measurements showed that, if ΦA > 0.3 kJ/cm2, the sheet resistance of laser-treated films can be reduced down to about 15 Ω/sq, which is a value more than 20% lower than that measured on as-annealed untreated films. Furthermore, as pointed out by a comprehensive Raman spectroscopy analysis, it was found that sheet resistance decreases linearly with ΦA, due to a progressively higher degree of crystallinity and stacking order of the graphitic phase. Results therefore highlight that fs-laser treatment can be profitably used as an additional process for improving the performance of printable carbon electrodes, which have been recently proposed as a valid alternative to metal electrodes for stable and up-scalable perovskite solar cells.

Improving the Performance of Printable Carbon Electrodes by Femtosecond Laser Treatment

Palma, Alessandro L.;
2020

Abstract

Low-cost carbon-conductive films were screen-printed on a Plexiglas® substrate, and then, after a standard annealing procedure, subjected to femtosecond (fs) laser treatments at different values of total accumulated laser fluence ΦA. Four-point probe measurements showed that, if ΦA > 0.3 kJ/cm2, the sheet resistance of laser-treated films can be reduced down to about 15 Ω/sq, which is a value more than 20% lower than that measured on as-annealed untreated films. Furthermore, as pointed out by a comprehensive Raman spectroscopy analysis, it was found that sheet resistance decreases linearly with ΦA, due to a progressively higher degree of crystallinity and stacking order of the graphitic phase. Results therefore highlight that fs-laser treatment can be profitably used as an additional process for improving the performance of printable carbon electrodes, which have been recently proposed as a valid alternative to metal electrodes for stable and up-scalable perovskite solar cells.
femtosecond laser
sheet resistance
Raman spectroscopy
printable carbon electrodes
perovskite solar cells
File in questo prodotto:
File Dimensione Formato  
2020 - Improving the Performance of Printable Carbon Electrodes by Femtosecond Laser Treatment.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.33 MB
Formato Adobe PDF
3.33 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/58101
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact