This study proposes a stochastic optimisation programming for scheduling a microgrid (MG) considering multiple energy devices and the uncertain nature of renewable energy resources and parking lot-based electric vehicles (EVs). Both thermal and electrical features of the multi-energy system are modelled by considering combined heat and power generation, thermal energy storage, and auxiliary boilers. Also, price-based and incentive-based demand response (DR) programs are modelled in the proposed multi-energy MG to manage a commercial complex including hospital, supermarket, strip mall, hotel and offices. Moreover, a linearised AC power flow is utilised to model the distribution system, including EVs. The feasibility of the proposed model is studied on a system based on real data of a commercial complex, and the integration of DR and EVs with multiple energy devices in an MG is investigated. The numerical studies show the high impact of EVs on the operation of the multi-energy MGs.

Management of renewable-based multi-energy microgrids in the presence of electric vehicles

Di Somma M.;Graditi G.;
2020

Abstract

This study proposes a stochastic optimisation programming for scheduling a microgrid (MG) considering multiple energy devices and the uncertain nature of renewable energy resources and parking lot-based electric vehicles (EVs). Both thermal and electrical features of the multi-energy system are modelled by considering combined heat and power generation, thermal energy storage, and auxiliary boilers. Also, price-based and incentive-based demand response (DR) programs are modelled in the proposed multi-energy MG to manage a commercial complex including hospital, supermarket, strip mall, hotel and offices. Moreover, a linearised AC power flow is utilised to model the distribution system, including EVs. The feasibility of the proposed model is studied on a system based on real data of a commercial complex, and the integration of DR and EVs with multiple energy devices in an MG is investigated. The numerical studies show the high impact of EVs on the operation of the multi-energy MGs.
File in questo prodotto:
File Dimensione Formato  
iet-rpg.2019.0124.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.77 MB
Formato Adobe PDF
2.77 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12079/58292
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
social impact