Olive (Olea europaea) is an important crop in Europe, with high cultural, economic and nutritional significance. Olive oil flavor and quality depend on phenolic secoiridoids, but the biosynthetic pathway of these iridoids remains largely uncharacterized. We discovered two bifunctional cytochrome P450 enzymes, catalyzing the rare oxidative C-C bond cleavage of 7-epi-loganin to produce oleoside methyl ester (OeOMES) and secoxyloganin (OeSXS), both through a ketologanin intermediary. Although these enzymes are homologous to the previously reported Catharanthus roseus secologanin synthase (CrSLS), the substrate and product profiles differ. Biochemical assays provided mechanistic insights into the two-step OeOMES and CrSLS reactions. Model-guided mutations of OeOMES changed the product profile in a predictable manner, revealing insights into the molecular basis for this change in product specificity. Our results suggest that, in contrast to published hypotheses, in planta production of secoxy-iridoids is secologanin-independent. Notably, sequence data of cultivated and wild olives point to a relation between domestication and OeOMES expression. Thus, the discovery of this key biosynthetic gene suggests a link between domestication and secondary metabolism, and could potentially be used as a genetic marker to guide next-generation breeding programs.

Two bi-functional cytochrome P450 CYP72 enzymes from olive (Olea europaea) catalyze the oxidative C-C bond cleavage in the biosynthesis of secoxy-iridoids – flavor and quality determinants in olive oil

Alagna F.;
2021

Abstract

Olive (Olea europaea) is an important crop in Europe, with high cultural, economic and nutritional significance. Olive oil flavor and quality depend on phenolic secoiridoids, but the biosynthetic pathway of these iridoids remains largely uncharacterized. We discovered two bifunctional cytochrome P450 enzymes, catalyzing the rare oxidative C-C bond cleavage of 7-epi-loganin to produce oleoside methyl ester (OeOMES) and secoxyloganin (OeSXS), both through a ketologanin intermediary. Although these enzymes are homologous to the previously reported Catharanthus roseus secologanin synthase (CrSLS), the substrate and product profiles differ. Biochemical assays provided mechanistic insights into the two-step OeOMES and CrSLS reactions. Model-guided mutations of OeOMES changed the product profile in a predictable manner, revealing insights into the molecular basis for this change in product specificity. Our results suggest that, in contrast to published hypotheses, in planta production of secoxy-iridoids is secologanin-independent. Notably, sequence data of cultivated and wild olives point to a relation between domestication and OeOMES expression. Thus, the discovery of this key biosynthetic gene suggests a link between domestication and secondary metabolism, and could potentially be used as a genetic marker to guide next-generation breeding programs.
C-C oxidative cleavage
cytochrome P450
iridoid biosynthesis
Olea europaea
oleoside methyl ester
oleuropein
olive
phenolic secoiridoids
Cytochrome P-450 Enzyme System
Europe
Iridoids
Olive Oil
Oxidative Stress
Plant Breeding
Olea
File in questo prodotto:
File Dimensione Formato  
nph.16975.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.9 MB
Formato Adobe PDF
1.9 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12079/58661
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
social impact