With the recent rise of new photovoltaic applications, it has become necessary to develop specific optoelectronic properties for thin-film technologies such as Cu(In,Ga)Se2 and to take advantage of their high degree of tunability. The feasibility of efficient wide bandgap absorbers on transparent conductive oxide substrates is, in that context, of critical importance. Using an original approach based on a predeposition sodium treatment, Cu(In,Ga)Se2 absorbers fabricated by sputtering and reactive annealing with a Ga to (Ga + In) content over 0.7 and an optical bandgap above 1.4 eV are deposited on transparent fluorine-doped tin oxide films, with the insertion of an ultrathin MoSe2 layer preserving the contact's ohmicity. Different material characterizations are carried out, and a thorough Raman analysis of the absorber reveals that the sodium pretreatment significantly enhances the Ga incorporation into the chalcopyrite matrix, along with markedly improving the film's morphology and crystalline quality. This translates to a spectacular boost of the photovoltaic performance for the resulting solar cell as compared with a reference device without Na, specifically in the voltage and fill factor. Eventually, an efficiency exceeding 10% is obtained without antireflection coating, a record value bridging the gap with the state of the art on nontransparent substrates.

Over 10% Efficient Wide Bandgap CIGSe Solar Cells on Transparent Substrate with Na Predeposition Treatment

Malerba C.;Valentini M.;
2020-01-01

Abstract

With the recent rise of new photovoltaic applications, it has become necessary to develop specific optoelectronic properties for thin-film technologies such as Cu(In,Ga)Se2 and to take advantage of their high degree of tunability. The feasibility of efficient wide bandgap absorbers on transparent conductive oxide substrates is, in that context, of critical importance. Using an original approach based on a predeposition sodium treatment, Cu(In,Ga)Se2 absorbers fabricated by sputtering and reactive annealing with a Ga to (Ga + In) content over 0.7 and an optical bandgap above 1.4 eV are deposited on transparent fluorine-doped tin oxide films, with the insertion of an ultrathin MoSe2 layer preserving the contact's ohmicity. Different material characterizations are carried out, and a thorough Raman analysis of the absorber reveals that the sodium pretreatment significantly enhances the Ga incorporation into the chalcopyrite matrix, along with markedly improving the film's morphology and crystalline quality. This translates to a spectacular boost of the photovoltaic performance for the resulting solar cell as compared with a reference device without Na, specifically in the voltage and fill factor. Eventually, an efficiency exceeding 10% is obtained without antireflection coating, a record value bridging the gap with the state of the art on nontransparent substrates.
2020
alkaline treatments
bifacial solar cells
tandem solar cells
transparent substrates
wide bandgap CIGSe
File in questo prodotto:
File Dimensione Formato  
Over 10% Efficient Wide Bandgap CIGSe Solar Cells on Transparent Substrate with Na Predeposition Treatment.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 708.89 kB
Formato Adobe PDF
708.89 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/58681
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
social impact