Today's variety of photovoltaic (PV) technologies imposes new challenges to laboratories and industries to precisely measure the performance of devices and, consequently, to accurately estimate the energy yield once installed in a specific location. Spectroradiometry has become a key discipline for metrology applied to PV: Spectral irradiance is one of the three parameters according to which solar simulators are classified according to IEC 60904-9; precise spectrum measurements are a key factor in the spectral mismatch calculation. Finally, energy rating calculations according to IEC 61853 involve spectral irradiance conditions different than the AM1.5G standard spectrum. To tackle these issues, since 2011, the International Spectroradiometer Interlaboratory Comparison (ISRC) takes place annually in different locations of Europe with the participation of laboratories, research institutes, and industry partners to assess spectral measurement capabilities and share good measurement practices and protocols. In this paper, several results of the 9th ISRC 2019 are presented, looking in particular at the impact on characterization of new technologies like organic devices (OPV), dye-sensitized (DSSC), and perovskites.

Results of the IX International Spectroradiometer Intercomparison and impact on precise measurements of new photovoltaic technologies

Fucci R.
2021-01-01

Abstract

Today's variety of photovoltaic (PV) technologies imposes new challenges to laboratories and industries to precisely measure the performance of devices and, consequently, to accurately estimate the energy yield once installed in a specific location. Spectroradiometry has become a key discipline for metrology applied to PV: Spectral irradiance is one of the three parameters according to which solar simulators are classified according to IEC 60904-9; precise spectrum measurements are a key factor in the spectral mismatch calculation. Finally, energy rating calculations according to IEC 61853 involve spectral irradiance conditions different than the AM1.5G standard spectrum. To tackle these issues, since 2011, the International Spectroradiometer Interlaboratory Comparison (ISRC) takes place annually in different locations of Europe with the participation of laboratories, research institutes, and industry partners to assess spectral measurement capabilities and share good measurement practices and protocols. In this paper, several results of the 9th ISRC 2019 are presented, looking in particular at the impact on characterization of new technologies like organic devices (OPV), dye-sensitized (DSSC), and perovskites.
2021
dye-sensitized
intercomparison
organic
perovskite solar cells
solar spectrum
spectral mismatch factor
File in questo prodotto:
File Dimensione Formato  
Results of the IX International Spectroradiometer Intercomparison and impact on precise measurements of new photovoltaic technologies.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.29 MB
Formato Adobe PDF
2.29 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/58721
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
social impact