The development of cathode materials represents the key bottleneck to further push the performance of current Li-ion batteries (LIB) beyond the commercial benchmark. Li-rich transition-metal-layered oxides (LRLOs) are a promising class of materials to use as high-capacity/high-potential positive electrodes in LIBs thanks to the large lithium content (e.g., ∼1.2 Li equiv per formula unit) and the exploitation of multiple redox couples (e.g., Mn4+/3+, Co4+/3+, Ni4+/3+/2+). In this work, we propose and demonstrate experimentally a Co-free overlithiated LRLO material with a limited nickel content, i.e., Li1.25Mn0.625Ni0.125O2. This LRLO is able to exchange reversibly an outstanding practical specific capacity at room temperature, i.e., 230 mAh g-1 at C/10 for almost 200 cycles, and can sustain high current rates, i.e., 118 mAh g-1 at 2C. This material has been successfully prepared by a facile solution combustion synthesis and characterized by scanning electron microscopy (SEM), X-ray photoemission spectroscopy (XPS), X-ray absorption near-edge spectroscopy (XANES), X-ray diffraction (XRD), and Raman techniques. Overall, our positive electrodes based on Li1.25Mn0.625Ni0.125O2 overlithiated Co-free LRLO is a step forward in the development of the materials for batteries with improved performance and better environmental fingerprint.

Exploring a Co-Free, Li-Rich Layered Oxide with Low Content of Nickel as a Positive Electrode for Li-Ion Battery

Santoni A.;Reale P.;Silvestri L.
2021-01-01

Abstract

The development of cathode materials represents the key bottleneck to further push the performance of current Li-ion batteries (LIB) beyond the commercial benchmark. Li-rich transition-metal-layered oxides (LRLOs) are a promising class of materials to use as high-capacity/high-potential positive electrodes in LIBs thanks to the large lithium content (e.g., ∼1.2 Li equiv per formula unit) and the exploitation of multiple redox couples (e.g., Mn4+/3+, Co4+/3+, Ni4+/3+/2+). In this work, we propose and demonstrate experimentally a Co-free overlithiated LRLO material with a limited nickel content, i.e., Li1.25Mn0.625Ni0.125O2. This LRLO is able to exchange reversibly an outstanding practical specific capacity at room temperature, i.e., 230 mAh g-1 at C/10 for almost 200 cycles, and can sustain high current rates, i.e., 118 mAh g-1 at 2C. This material has been successfully prepared by a facile solution combustion synthesis and characterized by scanning electron microscopy (SEM), X-ray photoemission spectroscopy (XPS), X-ray absorption near-edge spectroscopy (XANES), X-ray diffraction (XRD), and Raman techniques. Overall, our positive electrodes based on Li1.25Mn0.625Ni0.125O2 overlithiated Co-free LRLO is a step forward in the development of the materials for batteries with improved performance and better environmental fingerprint.
2021
cathode
Co-free
electrochemical performance
Li-ion battery
lithium-rich layered oxides
File in questo prodotto:
File Dimensione Formato  
acsaem.1c02133.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Licenza per accesso riservato
Dimensione 4.43 MB
Formato Adobe PDF
4.43 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/60030
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
social impact