A Quartz Crystal Microbalance (QCM) gas sensor coated with carbon nanotubes (CNTs) layered films as chemically interactive nanomaterial is described. A QCM resonator integrated on AT-cut quartz substrate has been functionally characterized as oscillator at the resonant frequency of 10 MHz. The CNTs have been grown by chemical vapor deposition (CVD) system onto alumina substrates, coated with 2.5 nm thick Fe catalyst, at a temperature of 750°C in H 2/C 2H 2 gaseous ambient as active materials for gas sensors. CNTs multilayers, with and without buffer layer of cadmium arachidate (CdA), have been prepared by the Langmuir-Blodgett (LB) technique to coat at the double-side the QCM sensors for organic vapor detection, at room temperature. It was demonstrated that the highest mass sensitivity has been achieved for CNTs multilayer onto CdA buffer material due to the greatest gas adsorbed mass. The sensing properties of the CNTs-sensors at enhanced mass sensitivity have been investigated for different vapors of ethanol, methanol, acetone, m-xylene, toluene and ethylacetate in a wide range of concentration from 10 to 800 ppm. The CNTs-based QCM-sensors exhibit high sensitivity (e.g., 5.55 Hz/ppm to m-xylene of the CNTs-multilayer) at room temperature, fast response, linearity, reversibility, repeatability, low drift of the baseline frequency, potential sub-ppm range detection limit. © 2012 Springer Science+Business Media, LLC.
Organic vapor detection by QCM sensors using CNT-composite films
Alvisi M.;Aversa P.;Cassano G.;Serra E.;Tagliente M. A.;Schioppa M.;Rossi R.;Suriano D.;Piscopiello E.;Penza M.
2012-01-01
Abstract
A Quartz Crystal Microbalance (QCM) gas sensor coated with carbon nanotubes (CNTs) layered films as chemically interactive nanomaterial is described. A QCM resonator integrated on AT-cut quartz substrate has been functionally characterized as oscillator at the resonant frequency of 10 MHz. The CNTs have been grown by chemical vapor deposition (CVD) system onto alumina substrates, coated with 2.5 nm thick Fe catalyst, at a temperature of 750°C in H 2/C 2H 2 gaseous ambient as active materials for gas sensors. CNTs multilayers, with and without buffer layer of cadmium arachidate (CdA), have been prepared by the Langmuir-Blodgett (LB) technique to coat at the double-side the QCM sensors for organic vapor detection, at room temperature. It was demonstrated that the highest mass sensitivity has been achieved for CNTs multilayer onto CdA buffer material due to the greatest gas adsorbed mass. The sensing properties of the CNTs-sensors at enhanced mass sensitivity have been investigated for different vapors of ethanol, methanol, acetone, m-xylene, toluene and ethylacetate in a wide range of concentration from 10 to 800 ppm. The CNTs-based QCM-sensors exhibit high sensitivity (e.g., 5.55 Hz/ppm to m-xylene of the CNTs-multilayer) at room temperature, fast response, linearity, reversibility, repeatability, low drift of the baseline frequency, potential sub-ppm range detection limit. © 2012 Springer Science+Business Media, LLC.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.