In this paper we report on Surface Acoustic Wave (SAW) gas sensors based on quartz two-port resonators configured as oscillators at resonant frequency of 915 MHz. Nanowires (NW) of semiconducting tin dioxide (SnO 2 ) have been grown by Vapor Phase (VP) process and used as filler in a nanocomposite layer to fabricate a highly-sensitive nanomaterial for gas detection, at room temperature. The nanocomposite layer consisting of an organic host-matrix of cadmium arachidate (CdA) and a weight-tailored filler of SnO 2 NW has been deposited as thin film onto SAW resonators by means of the molecular engineering Langmuir-Blodgett (LB) technique. SAW gas sensors performance was investigated in presence of ppm-level of ethanol, methanol, ethylacetate, toluene, at room temperature. The results demonstrate good sensitivity to vapors under test at ppm-level and a SAW gas response tuned by the weight-content of filler of SnO 2 NW in the LB nanocomposite layer.
Surface Acoustic Wave 915 MHz resonator oscillator gas sensors using SnO2 nanowires-based nanocomposite layer
Penza, M.;Aversa, P.;Suriano, D.;Cassano, G.;Serra, E.;
2008-01-01
Abstract
In this paper we report on Surface Acoustic Wave (SAW) gas sensors based on quartz two-port resonators configured as oscillators at resonant frequency of 915 MHz. Nanowires (NW) of semiconducting tin dioxide (SnO 2 ) have been grown by Vapor Phase (VP) process and used as filler in a nanocomposite layer to fabricate a highly-sensitive nanomaterial for gas detection, at room temperature. The nanocomposite layer consisting of an organic host-matrix of cadmium arachidate (CdA) and a weight-tailored filler of SnO 2 NW has been deposited as thin film onto SAW resonators by means of the molecular engineering Langmuir-Blodgett (LB) technique. SAW gas sensors performance was investigated in presence of ppm-level of ethanol, methanol, ethylacetate, toluene, at room temperature. The results demonstrate good sensitivity to vapors under test at ppm-level and a SAW gas response tuned by the weight-content of filler of SnO 2 NW in the LB nanocomposite layer.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.