We demonstrate the successful operation of a chemical microsensor based on Thin Film Bulk Acoustic Resonator (TFBAR) for organic vapor detection at room temperature. The TFBAR consists of a vibrating membrane of AIN/SI 3N4 fabricated on silicon substrate and resonating at the frequency of 1.045 GHz. Using a nanocomposite layer based on Single-Walled Carbon Nanotubes (SWCNTs) and prepared by the Langmuir-Blodgett technique onto the TFBAR device as highly-sensitive nanomaterial, the sensing performance of TFBAR sensor has been evaluated both as a passive device by a network analyzer with phase and insertion loss responses, and as oscillator with frequency response. The vapor sensing characteristics of SWCNTs-based TFBAR sensor are presented illustrating interesting results. © 2007 IEEE.

Thin film bulk acoustic resonator vapor sensors with single-walled carbon nanotubes-based nanocomposite layer

Penza M.;Cassano G.;Aversa P.;Suriano D.;
2007

Abstract

We demonstrate the successful operation of a chemical microsensor based on Thin Film Bulk Acoustic Resonator (TFBAR) for organic vapor detection at room temperature. The TFBAR consists of a vibrating membrane of AIN/SI 3N4 fabricated on silicon substrate and resonating at the frequency of 1.045 GHz. Using a nanocomposite layer based on Single-Walled Carbon Nanotubes (SWCNTs) and prepared by the Langmuir-Blodgett technique onto the TFBAR device as highly-sensitive nanomaterial, the sensing performance of TFBAR sensor has been evaluated both as a passive device by a network analyzer with phase and insertion loss responses, and as oscillator with frequency response. The vapor sensing characteristics of SWCNTs-based TFBAR sensor are presented illustrating interesting results. © 2007 IEEE.
978-1-4244-1261-7
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12079/60087
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
social impact