Nanostructured glass substrates endowed with high aspect ratio one-dimensional corrugations are prepared by defocused ion beam erosion through a self-organized gold (Au) stencil mask. The shielding action of the stencil mask is amplified by co-deposition of gold atoms during ion bombardment. The resulting glass nanostructures enable broadband anti-reflection functionality and at the same time ensure a high efficiency for diffuse light scattering (Haze). It is demonstrated that the patterned glass substrates exhibit a better photon harvesting than the flat glass substrate in p-i-n type thin film a-Si:H solar cells. © 2013 IOP Publishing Ltd.
Self-organized broadband light trapping in thin film amorphous silicon solar cells
Usatii, I.;Mercaldo, L.V.;Delli Veneri, P.
2013-01-01
Abstract
Nanostructured glass substrates endowed with high aspect ratio one-dimensional corrugations are prepared by defocused ion beam erosion through a self-organized gold (Au) stencil mask. The shielding action of the stencil mask is amplified by co-deposition of gold atoms during ion bombardment. The resulting glass nanostructures enable broadband anti-reflection functionality and at the same time ensure a high efficiency for diffuse light scattering (Haze). It is demonstrated that the patterned glass substrates exhibit a better photon harvesting than the flat glass substrate in p-i-n type thin film a-Si:H solar cells. © 2013 IOP Publishing Ltd.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.