The accelerating rate of the introduction of non-indigenous species (NIS) and the magnitude of shipping traffic make the Mediterranean Sea a hotspot of biological invasions. For the effective management of NIS, early detection and intensive monitoring over time and space are essential. Here, we present an overview of possible applications of citizen science and remote sensing in monitoring alien seaweeds in the Mediterranean Sea. Citizen science activities, involving the public (e.g., tourists, fishermen, divers) in the collection of data, have great potential for monitoring NIS. The innovative methodologies, based on remote sensing techniques coupled with in situ/laboratory advanced sampling/analysis methods for tracking such species, may be useful and effective tools for easily assessing NIS distribution patterns and monitoring the space/time changes in habitats in order to support the sustainable management of the ecosystems. The reported case studies highlight how these cost-effective systems can be useful complementary tools for monitoring NIS, especially in marine protected areas, which, despite their fundamental role in the conservation of marine biodiversity, are not immune to the introduction of NIS. To ensure effective and long-lasting management strategies, collaborations between researchers, policy makers and citizens are essential.
Tracking marine alien macroalgae in the mediterranean sea: The contribution of citizen science and remote sensing
Borfecchia F.;Micheli C.
2021-01-01
Abstract
The accelerating rate of the introduction of non-indigenous species (NIS) and the magnitude of shipping traffic make the Mediterranean Sea a hotspot of biological invasions. For the effective management of NIS, early detection and intensive monitoring over time and space are essential. Here, we present an overview of possible applications of citizen science and remote sensing in monitoring alien seaweeds in the Mediterranean Sea. Citizen science activities, involving the public (e.g., tourists, fishermen, divers) in the collection of data, have great potential for monitoring NIS. The innovative methodologies, based on remote sensing techniques coupled with in situ/laboratory advanced sampling/analysis methods for tracking such species, may be useful and effective tools for easily assessing NIS distribution patterns and monitoring the space/time changes in habitats in order to support the sustainable management of the ecosystems. The reported case studies highlight how these cost-effective systems can be useful complementary tools for monitoring NIS, especially in marine protected areas, which, despite their fundamental role in the conservation of marine biodiversity, are not immune to the introduction of NIS. To ensure effective and long-lasting management strategies, collaborations between researchers, policy makers and citizens are essential.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.