To demonstrate the large potential of proton minibeam radiotherapy (pMBRT) as a new method to treat tumor diseases, a preclinical proton minibeam radiation facility was designed. It is based on a tandem Van-de-Graaff accelerator providing a 16 MeV proton beam and a 3 GHz linac post-accelerator (designs: AVO-ADAM S.A, Geneva, Switzerland and ENEA, Frascati, Italy). To enhance the transmission of the tandem beam through the post-accelerator by a factor of 3, two drift tube buncher units were designed and constructed: A brazed 5-gap structure (adapted SCDTL tank of the TOP-IMPLART project (ENEA)) and a non-brazed low budget 4-gap structure. Both are made of copper. The performance of the two differently manufactured units was evaluated using a 16 MeV tandem accelerator beam and a Q3D magnetic spectrograph. Both buncher units achieve the required summed voltage amplitude of 42 kV and amplitude stability at a power feed of less than 800 W.

Concept and performance evaluation of two 3 GHz buncher units optimizing the dose rate of a novel preclinical Proton minibeam irradiation facility

Picardi L.;Nenzi P.;Ronsivalle C.;
2021

Abstract

To demonstrate the large potential of proton minibeam radiotherapy (pMBRT) as a new method to treat tumor diseases, a preclinical proton minibeam radiation facility was designed. It is based on a tandem Van-de-Graaff accelerator providing a 16 MeV proton beam and a 3 GHz linac post-accelerator (designs: AVO-ADAM S.A, Geneva, Switzerland and ENEA, Frascati, Italy). To enhance the transmission of the tandem beam through the post-accelerator by a factor of 3, two drift tube buncher units were designed and constructed: A brazed 5-gap structure (adapted SCDTL tank of the TOP-IMPLART project (ENEA)) and a non-brazed low budget 4-gap structure. Both are made of copper. The performance of the two differently manufactured units was evaluated using a 16 MeV tandem accelerator beam and a Q3D magnetic spectrograph. Both buncher units achieve the required summed voltage amplitude of 42 kV and amplitude stability at a power feed of less than 800 W.
File in questo prodotto:
File Dimensione Formato  
Concept and performance evaluation of two 3 GHz buncher units optimizing the dose rate of a novel preclinical proton minibeam irradiation facility.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 521.62 kB
Formato Adobe PDF
521.62 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12079/61701
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
social impact